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Abstract—This paper considers the allocation of exchange rates in a network of wireless nodes which engage in peer-to-peer

dissemination. Here, in addition to the desirable throughput efficiency, it is important to ensure a level of rate reciprocity between peers,

an issue that has been studied before only for wired networks. For the wireless substrate efficiency and reciprocity may be in conflict,

due to the non-uniform link capacities of different peering choices, and the possible interference between them. We use convex

optimization to formulate a relevant tradeoff, measuring reciprocity through a Kullback-Leibler divergence between sent and received

rates. We propose decentralized methods which involve peer-to-peer interactions, and are shown to converge to the corresponding

tradeoff point. Illustrative simulations are provided.
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1 INTRODUCTION

The efficient dissemination of a large content file among
a set of network nodes requires the orchestration of multiple
transfers, within the constraints of the communication sub-
strate. Since there is typically no central network planner,
efficiency must be pursued by decentralized algorithms.
Among them, the peer-to-peer (P2P) approach in which
nodes exchange pieces of the file of common interest has
emerged with great strength. By turning client nodes into
servers, a service capacity is deployed that scales with
content demand.

A fundamental premise of such cooperative dissemina-
tion is that a certain level of reciprocity is enforced: peers will
participate as servers inasmuch as they receive as clients.
For this reason, the most successful P2P implementations
(e.g. BitTorrent [7]) include heuristic algorithms to incen-
tivize reciprocation. Formal studies have also tackled this
question, with crisp results in the case of a proportional
criterion for reciprocity first investigated in [24]. Dynamic
iterative algorithms based on this principle can be proved
to converge to the desired fairness [23], and lead to al-
ternate protocol implementations [15]. Further analysis of
this idealized proportional fairness criterion, and practical
approximations through neighbor selection, are provided in
[25].

All of the above references focus on the main application
domain of P2P, which is the global Internet, with most
peers sitting behind wired access links; for tractability it is
assumed that these are the only bottlenecks, and the remain-
der of the network is idealized. Under this assumption the
overall service capacity is fixed, the only decision is how to
allocate it between client peers. There can still be tradeoffs
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with performance as recognized in [9], when peer arrivals
and departures are considered. However the efficiency of the
network substrate at any time is agnostic to the peering
choice, so from this standpoint reciprocity is not a burden.

In this paper we are interested in the reciprocity question
for a network of wireless nodes which engage in mutual
communication under the peer-to-peer philosophy. Our
motivation is academic, but we believe of interest due
to the established potential of this dissemination method.
There has been work on epidemic approaches to content
dissemination (e.g. [22]), where wireless networks motivate
a time-varying network graph, but where capacity is ig-
nored: exchanges become a one-shot interaction between
nodes. Here we consider the opposite situation of long-term
dissemination over a network that has fixed topology, but
where capacity is constrained, depending on the peering
choices and on the management of interference. There is,
of course, ample literature on resource allocation in wireless
networks from the network utility maximization perspective
(NUM, see e.g. [6], [16]); here efficiency and fairness be-
tween sending flows is considered. This is, however, different
from the send/receive reciprocity sought here.

The paper is organized as follows. In Section 2 we
set up a general framework for studying efficiency and a
convex measure of reciprocity, namely the Kullback-Leibler
divergence (e.g., [3]) between sent and received rates. Two
versions, global and peerwise reciprocity, are considered,
the latter more amenable to decentralized optimization. In
the wired network case they can be optimized with methods
from [25], as reviewed in Section 3. For a wireless substrate,
a first difference addressed in Section 4 is that outgoing links
from each peer will have a non-uniform capacity according
to the destination. This introduces an efficiency/reciprocity
tradeoff, formalized in terms of a convex optimization prob-
lem. We develop a solution based on Gauss-Seidel updates
that involve decentralized peerwise information, which is
proved to converge, and tested in simulation examples.

In Section 5 we tackle the additional issue of link inter-
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ference, which makes decentralization far more challenging.
Through duality our convex optimization can be decoupled
between the reciprocity and medium access components,
but similar to NUM problems the latter involves maximum-
weight scheduling. Given its complexity, we adapt to our
problem the Markov approximation strategy of [5], [12]; this
leads to a primal-dual dynamics that is decentralized and is
shown to converge to the optimal tradeoff. We also present
simulation examples of this procedure. Conclusions are
given in Section 6, and some proofs deferred to Appendices.
A partial version of our results was presented in [18].

2 EFFICIENCY AND RECIPROCITY IN P2P SHARING

We consider a fixed population of N peers who engage
in bilateral exchange of information1. Their connectivity
is specified by a set L of allowable links, or alternatively
through an adjacency matrix A = (aij), where aij = 1
when i can send data to j, and aij = 0 otherwise; we set
aii = 0. A is assumed symmetric, and with no rows of zeros
(no disconnected peers).

Define a resource sharing matrix Z ∈ R
N×N
+ in which zij

represents the offered throughput from peer i to peer j. Z is
constrained by connectivity, i.e. it must satisfy

zij ≥ 0, zij = 0 if aij = 0. (1)

Z will also be subject to bandwidth constraints, of a nature
depending on the network substrate: postponing this ques-
tion, we refer to a set Z of feasible resource sharing matrices.

The aggregate sent and received rates per peer are

si(Z) =
∑

j

zij ∀i; rj(Z) =
∑

i

zij ∀j. (2)

In matrix form, we can write: Z1 = s, 1
TZ = rT , where

s, r,1 ∈ R
N are interpreted as column vectors, the latter

being the vector of ones, and T denotes transpose.
We now proceed to specify the desirable objectives on

the resource sharing matrix Z ∈ Z . A first natural objective
is the total rate of the exchange, obtained by

R(Z) =
∑

i,j

zij =
∑

i

si =
∑

j

rj . (3)

Maximizing this quantity would lead to the most efficient
use of the network in the sense of total throughput. This can
also be fit in the language of network utility maximization
(NUM) [6], [14] by considering a linear utility in either sent
or received rates.2

This efficiency objective is however insufficient for peer-
to-peer networks; it may happen that the maximum rate
allocation leaves a peer receiving no data, which is not
compatible with a bidirectional exchange. Instead, to pro-
vide proper incentives for cooperation between peers it is
desirable to have approximate parity between the rates a
peer sends and receives. See [9], [24] for further justification
of this fairness criterion.

1. In BitTorrent [7] parlance we focus only on the leechers, who both
send and receive data.

2. A strictly concave utility function of rate is often preferred, which
gives stronger properties to the optimization. We will not pursue this
here.

This motivates our introduction of a quantitative mea-
sures of discrepancy between the upload and download
rate vectors. A first choice is the Kullback-Leibler (KL)
divergence or relative entropy (see [3], [8])

D(s||r) :=
∑

j

sj log

(
sj
rj

)

, (4)

a jointly convex function of both vectors. Since s and r have
the same sum (R(Z) in (3)), their KL divergence is always
non-negative [8] and only zero if s = r, i.e. if every peer
receives as much throughput as it provides to the network.

Therefore, an allocation matrix Z with small D(s||r)
achieves an approximate level of reciprocity, globally be-
tween each peer and the rest of the swarm.

An alternative, peerwise notion of reciprocity is to require
that peers i and j share equal amounts of bandwidth, i.e.
that Z is symmetric. Approximate peerwise reciprocity can
be measured by the KL divergence between matrices

D(Z||ZT ) :=
∑

i,j:aij=1

zij log

(
zij
zji

)

. (5)

These dual notions of reciprocity are closely related to
the (global and peerwise) proportional fairness notions in
[24] for wired networks; we elaborate on these connections
below.

The following Lemma formalizes the intuitive fact that
the latter notion of reciprocity is more restrictive than the
first:

Lemma 1. D(Z||ZT ) ≥ D(s||r) for any allocation Z , and
equality holds if and only if

zij
zji

=
si
ri

for any i, j with aij = 1.

Proof. The result follows from the log-sum inequality (see
[8]), which for each fixed i implies

∑

j

zij log

(
zij
zji

)

≥
(∑

j

zij
)

log

(∑

j zij
∑

j zji

)

= si log

(
si
ri

)

.

Adding over i gives the desired bound. Conditions for
equality also follow from those in [8] .

An alternative expression for the peerwise reciprocity
measure is obtained by grouping terms (i, j) and (j, i) in
(5), writing D(Z||ZT ) :=

∑

{i>j:aij=1} d(zij , zji), where

d(x, y) : = x log

(
x

y

)

+ y log
(y

x

)

= D

([
x
y

] ∥
∥
∥
∥

[
y
x

])

. (6)

The function d(x, y) is well-defined and non-negative when
x > 0, y > 0, zero only if x = y. At the boundary of R2

+ it
has the following behavior:

• When x → 0+ and y > 0, d(x, y) → +∞. We can
adopt the extended function definition d(0, y) = +∞
if y > 0. Similarly, d(x, 0) = +∞ if x > 0.

• If both x → 0, y → 0, following a straight line with
slope m > 0, d(x,mx) → 0. But more unbalanced
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approaches (x, y(x)) to (0, 0) can yield different lim-
its, so as a function of two variables there is no limit.
We adopt the convention

d(0, 0) = 0, (7)

but emphasize the lack of continuity at this boundary
point.

An additional comment is the symmetry of d(x, y) in its
two variables, which highlights the fact that our peerwise
reciprocity measure is symmetric: D(Z||ZT ) = D(ZT ||Z).

Having defined the key notation, we state the main
question of interest for our paper: under the physical con-
straints of each specific network scenario, what is a suitable
tradeoff between efficiency and reciprocity, and whether
such allocation can be found through decentralized peer
interactions.

3 WIRED NETWORKS WITH UPLOAD CONSTRAINT

In this section we provide background on prior results for
this question in the case of a wired P2P network, under
the usual assumption that the only bottleneck is the overall
upload bandwidth µi from each peer i. In this case we can
characterize the allowable resource sharing matrices as

Z =
{

Z ∈ R
N×N
+ satisfying (1),

∑

j

zij = µi ∀i
}

. (8)

Here the vector s of total sending rates is fixed at µ = (µi),
and the overall transfer rate is R(Z) =

∑

i µi for all Z ∈ Z :
all allowable allocations are equally efficient.3

Therefore in this case there is no tradeoff, the remaining
objective of reciprocity, in its global version, can stated in
terms of the following convex optimization:

Problem 1. Given a connectivity matrix A and upload band-
widths µ = (µi), find Z ∈ Z defined by (8) that minimizes
D(µ||r(Z)).

We note again that if r = µ is feasible within Z , it
will be optimal; otherwise we are seeking a certain kind of
approximation. An equivalent formulation (since µ is fixed)
is

max
Z

∑

j

µj log (rj(Z)) , subject to Z ∈ Z.

In this version it can be interpreted as an instance of
(weighted) proportional fairness, extensively studied in Inter-
net resource allocation [14]. Here, we choose each node’s
weight as its own contribution to the network.

The set of solutions to Problem 1 can be characterized
by Lagrangian duality; we recall some results in [25], based
on a stream of related literature [20], [23]. All solutions Z∗

to Problem 1 correspond to a unique vector r∗ = r(Z∗),
characterized by a unique set of multipliers or prices λ∗

i > 0,
i = 1, . . .N , such that:

• r∗i = λ∗
i µi for every peer. So λ∗

i defines the propor-
tional reciprocity the peer receives from the network.

3. One could, instead, define Z by an inequality constraint, but
this deliberate inefficiency would serve no purpose, and will not be
pursued.

• z∗ji > 0 only for j ∈ argmin{λ∗
j : aji = 1}; further-

more, in this case λ∗
i = [λ∗

j ]
−1. So at optimality a

peer can only receive/send rate to another of inverse
price.

Also in [25] is a detailed study of a prominent decentral-
ized algorithm for reciprocity, proposed in [15], [23], [24]:

zij(t+ 1) = µi

zji(t)

ri(t)
. (9)

In this proportional reciprocity scheme, peer i allocates to peer
j the fraction of its bandwidth µi equal to the proportion
of bandwidth received from peer j in the previous step. In
matrix form we write Z(t+ 1) = R[Z(t)] by introducing
the reciprocity mapping

R[Z] := diag (µi/ri(Z)) · ZT .

Algorithm (9) is closely related to the so-called Sinkhorn
procedure for matrix row and column renormalization [20].
A summary of its main properties is:

• Any solution Z∗ of Problem 1 is a fixed point of
R2, square of the reciprocity mapping. Furthermore
Z+ := R[Z∗] is also a solution of Problem 1.

• In general, Z+ need not be equal to Z∗, i.e. Z∗ need
not be a fixed point of the map R itself. However the

point Z̃ = Z∗+Z+

2 is another optimum and a fixed
point of R.

• In the special case where r = µ is feasible, there is
always a symmetric optimal allocation.

The most important fact is the following convergence result.

Theorem 2 ( [23], [25]). Given an initial condition Z(0) ∈
Z with zij(0) > 0 whenever aij = 1, the sequence generated
by (9) satisfies limk→∞ Z(2k) = Z∗, limk→∞ Z(2k + 1) =
Z+, where both Z∗ and Z+ are optimal points of Problem 1.
Furthermore, r(Z(t)) converges to the optimal rate vector r∗.

Thus, provided initially all exchange options are ex-
plored, the even and odd subsequences converge to (possi-
bly different) optimal allocations, and the fairness objective
is achieved.

We finish the section by highlighting an additional fact:
for any fixed point Z̃ of R, we have

z̃ij =
µi

r̃i
z̃ji =⇒

z̃ij
z̃ji

=
µi

r̃i
∀j,

the condition for equality in Lemma 1. We conclude that
D(Z̃||Z̃T ) = D(µ||r̃). Since as mentioned before there is
always a fixed point of R among the optima of Problem 1,
we have the following consequence:

Corollary 3. The minimum of D(Z||ZT ) under Z ∈ Z defined
by (8) has the same value as Problem 1, and a subset of its
solutions.

In other words, even if our objective is the looser global
reciprocity each peer receives from the network, in this
wired network case one can impose with no penalty the
more stringent peerwise reciprocity.
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4 WIRELESS NETWORKS: MULTIPLE RATES

We now move to consider a wireless network substrate, in
which peers occupy certain spatial locations, connected by
wireless channels. There are at least two differences between
this situation and the wired case:

(i) Wireless channels often adapt their rate to physical
layer parameters such as signal-to-noise ratio, itself
affected by distance. As a result, the sending rate
will no longer be agnostic to the choice of receiving
peer.

(ii) Wireless links may interfere with each other. There-
fore not all peers may transmit at the same time.

Remark 1. Another characteristic, which could partially offset
the efficiency loss of point (ii), is that wireless nodes may broad-
cast, sending pieces at the same time to many receiving peers.
This feature is not, however, easy to combine with the peer-to-
peer philosophy of bilateral exchange. In particular, the choice of
transmit rate, the piece to send, and the enforcement of reciprocity,
all come into question under one-to-many transmissions. We will
not pursue this direction further in this paper, leaving it open for
future research.

In this section we focus on issue (i), postponing to the
next section the consideration of interference. So for now
we assume all peers have separate transmission channels,
which they can allocate independently. Given two peers i
and j, let µij denote the maximum rate at which peer i can
transmit to j, if it were to choose only this destination.

By time-sharing between destinations the peer can
achieve the sending rates zij = pijµij where

∑

j pij = 1.
Here pij is the proportion of time devoted by peer i to neigh-
bor j, again we assume no inefficient idle time. Therefore the
achievable rate allocations are characterized by decoupled
constraints

Zi :=
{

Zi = (zij)
N
j=1, zij = 0 if aij = 0,

∑

j

zij
µij

= 1
}

(10)

on the rows of Z . The set Z of achievable matrices is
assimilated with the Cartesian product of the Zi,

Z =
{

Z ∈ R
N×N
+ : Zi ∈ Zi, i = 1, . . . , N

}

. (11)

Note that this is a generalization of (8), which corre-
sponds to the special case µij = µi for all j, where the
channel from peer i has the same quality for all destinations.

In general the matrix M = (µij) need not be symmet-
ric: differences in peer channel qualities (e.g. transmission
power) may cause µij 6= µji; indeed asymmetry was al-
ready present in the wired scenario.

We now look at a motivating example.

Example 1. Consider a wireless network with 3 peers which are
all neighbors, and the matrix of maximum rates

M =





0 2 2
2 0 1
2 1 0



 .

Here maximum rates are symmetric, but not always uniform
among outgoing links. We specify the time-sharing matrix P and
the resulting rate allocation Z :

P =

[
0 p 1− p
q 0 1− q
v 1− v 0

]

, Z =

[
0 2p 2− 2p
2q 0 1− q
2v 1− v 0

]

.

(12)

The set Z of allowable allocations corresponds to all above matrices
Z where p, q, v vary in the interval [0, 1].

The total rate is
∑

i,j zij = 4+q+v, so efficiency is no longer
agnostic to the peering choice: the set of efficient allocations is

Zeff =

{

Z =

[
0 2p 2− 2p
2 0 0
2 0 0

]

, p ∈ [0, 1]

}

.

Also note that there are no symmetric matrices in Zeff , even
though M is symmetric.

We now look at reciprocity, computing the vectors

s(Z) =





2
1 + q
1 + v



 , r(Z) =





2(q + v)
2p+ 1− v
3− 2p− q



 .

It is easily checked that in this case s = r is feasible (thus
minimizing D(s||r)), achieved for p = 1

2 and q+v = 1. Therefore
global reciprocity is reached by the allocations in

Zrec =

{

Z =

[
0 1 1
2q 0 1− q

2(1− q) q 0

]

, q ∈ [0, 1]

}

.

Among them, one matrix (for q = 1
2 ) is symmetric, thus achieving

peerwise reciprocity (D(Z||ZT ) = 0).

The main observation is that Zeff ∩ Zrec = ∅, one cannot
satisfy both objectives simultaneously.

4.1 Trading off efficiency with global reciprocity

The example shows that there is a tradeoff between effi-
ciency and reciprocity in wireless P2P settings. This sug-
gests managing the tradeoff through a combined cost that
contemplates both factors, such as

J(Z) = D(s||r)− αR(Z) =
∑

i

si

[

log

(
si
ri

)

− α

]

. (13)

Here the parameter α > 0 weighs the importance assigned
to efficiency. Note that J(Z) is a convex function of Z , so its
minimization over Z is a convex optimization problem.

Problem 2. Given A and M , find Z ∈ Z defined by (11) that
minimizes J(Z).

Example 2 (Continuation of Example 1). We minimize the cost
J(Z) over matrices Z(p, q, v) as in (12). We argue that it suffices
to confine our search to p = 1

2 , q = v. This is because for any
point (p, q, v) we can find another point (p′, q′, v′) = (1−p, v, q)
with the same efficiency and reciprocity: R(Z ′) = R(Z), and
D(s′||r′) = D(s||r), in fact s′, r′ coincide with s, r modulo
a permutation of the last two components. Therefore J(Z ′) =
J(Z). Invoking convexity of J , it can be no larger at the point
(Z + Z ′)/2, which corresponds to p = 1

2 , q = v.
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We thus consider the scalar valued function in q ∈ [0, 1]:

f(q) = J(Z(1/2, q, q))

= 2 log

(
1

2q

)

+ 2(1 + q) log

(
1 + q

2− q

)

− α(4 + 2q).

Minimizing f(q) does not yield a closed form solution, but we
find that the optimal q∗ satisfies

{
1
2 < q∗ < 1 if 0 < α < 2 + log(2);

q∗ = 1 if α > 2 + log(2).

Thus if the weight α is large we just get the optimal efficiency
solution. For moderate values of α we have a compromise with
reciprocity which, however, always yields

Z(q∗) =

[
0 1 1
2q∗ 0 1− q∗

2q∗ 1− q∗ 0

]

which is non-symmetric and with s∗ 6= r∗ (since q∗ > 1
2 ).

Returning to the general case, we may attempt to solve
Problem 2 through duality, which was a powerful method
in the wired network situation. Writing the Lagrangian

L(Z, λ) = J(Z) +
∑

i

λi

(∑

j

zij
µij

− 1
)

=
∑

i

[

si log

(
si
ri

)

− λi

]

+
∑

i,j

zij

[
λi

µij

− α

]

,

leads after some analysis to the saddle point condition:

λ∗
i = max

{j:aij=1}

[

− log

(
s∗i
r∗i

)

+ α− 1 +
s∗j
r∗j

]

µij .

In comparison to the conditions reviewed in Section 3 for
the wired case (µij = µi) we do not have here a clean inter-
pretation for the optimal multipliers as reciprocity factors.
And the preceding coupled transcendental equation does
not suggest an immediate path for decentralization.

4.2 Trading off efficiency and peerwise reciprocity –
best response algorithm

The decentralization objective motivates us to consider an
alternative convex optimization problem:

Problem 3. Given A and M , find Z ∈ Z defined by (11) that
minimizes the cost

E(Z) = D(Z||ZT )− αR(Z)

=
∑

i,j: aij=1

zij

[

log

(
zij
zji

)

− α

]

. (14)

In the wired case of Section 3, it follows from Corollary
3 that the minimum of E(Z) coincides with that of J(Z)
in (13) (in that case the throughput term is constant). In the
wireless situation this is no longer true. Still, this alternative
of trading off peerwise reciprocity with efficiency is a valid
option to achieve our tradeoff in a decentralized way.

Grouping the cost in Problem 3 as

E(Z) =
∑

i







∑

j

zij

[

log

(
zij
zji

)

− α

]





;

suggests the decentralized algorithm where peer i responds
to the received rates zji by optimizing the term in braces
over its decision variables zij :

Problem 4 (Best response iterate). For each i, and given zji
for all j, solve

min
Zi∈Zi

∑

j

zij

[

log

(
zij
zji

)

− α

]

, (15)

with Zi in (10).

To solve this problem for fixed ZT
i = (zji) (i-th row

of ZT ), construct the Lagrangian with multiplier λi for the
constraint:

Li(Zi, Z
T
i , λi) =

∑

j

zij

[

log

(
zij
zji

)

− α+
λi

µij

]

− λi.

To minimize over Zi for fixed λi (and ZT
i ), we impose

∂Li

∂zij
= log

(
zij
zji

)

− α+
λi

µij

+ 1 = 0, (16)

whose solution gives the reciprocity rule

zij = zjie
α−1−

λi
µij . (17)

The value of λi can be found by imposing the constraint
(10).

Remark 2. An important observation is that in the wired case
(µij = µi ∀j) we obtain in (17) zij = κizji for all j, namely
a proportional allocation of upload rates as a function of rates
received. After imposing the constraint we find κi = µi

ri
and

therefore this solution is precisely the proportional reciprocity
iteration (9), assuming we carry out these updates simultaneously
for all rows (peers). We have thus re-interpreted this algorithm as
the best response iteration in Problem 4.

Motivated by its good properties in the wired case, we
test this best response generalization.

Example 3. We simulate in Matlab the best-response iteration
for a 3-node network with maximal rate matrix

M =

[
0 3 2
3 0 1
2 1 0

]

.

Figure 1 shows the trajectories of the cost E(Z) in (14) when
Z(t) is updated using the best-response approach; the Gauss
Seidel alternative will be described later. We see that the best
response algorithm is unable to reach the optimum of Problem
3. This fact is not surprising, because even in the wired case the
iteration (9) need not converge to optimality in D(Z||ZT ), it can
oscillate between two suboptimal points.

The convergence property that (9) did have was reaching the
optimal global reciprocity D(s||r). This suggests looking here at
its counterpart, the cost J(Z) in (13). However, in this wireless
case the best-response iteration does not perform well either, as
shown in Figure 2.

Given the failure to optimize when all peers perform
simultaneous updates, one might consider the alternative of
solving Problem 4 one peer at-a-time; we tested this alter-
native as well (see [18]) but it does not reach the optimum
either. The proper way to carry out one at-a-time updates is
now discussed.
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Figure 1. Evolution of E(Z) for different algorithms.
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Figure 2. Evolution of J(Z) for different algorithms.

4.3 Gauss-Seidel algorithm and its convergence

The Gauss-Seidel approach for solving a convex optimiza-
tion problem where the variables are split in N components,
consists of N successive updates, in each of which the global
cost is optimized over one group of variables, with the
others fixed. In our case, peers would in turns update their
rows Zi of the allocation matrix, which would naturally
happen if they are not synchronized and use a common
update interval.

Note, however, that they must take into account all
cost terms affected by their decision, which includes others
beyond those in (15). To address this, write the cost in
Problem 3 as

E(Z) = Ei(Zi, Z
T
i ) + E−i(Z−i),

where

Ei(Zi, Z
T
i ) :=

∑

j:aij=1

[

zij log

(
zij
zji

)

+ zji log

(
zji
zij

)

− αzij

]

= D(Zi||Z
T
i ) +D(ZT

i ||Zi)− α1TZi, (18)

and the term E−i depends only on the allocations of other
peers, denoted collectively by Z−i.

One step in the Gauss Seidel algorithm is given by:

Problem 5. For fixed i, and given ZT
i minimize Ei(Zi, Z

T
i )

over Zi ∈ Zi.

This step requires the same information as the best-
response version, namely the rates zji received from other
peers, which is the basic assumption of any reciprocity
scheme. Both can be computed numerically using convex
optimization techniques.

Note that given ZT
i , the function Ei(Zi, Z

T
i ) is strictly

convex in Zi, thus Problem 5 has a unique solution Zi. A
study through duality leads to the saddle point condition

∂L̃i

∂zij
= log

(
zij
zji

)

− α+
λi

µij

+ 1−
zji
zij

= 0, (19)

which is a modest variant of (16).
Clearly, the Gauss-Seidel iteration will compute a se-

quence Z(t) with monotonically decreasing values of
E(Z(t)); will it reach optimality? In the remaining trajectory
of Figure 1 we show a simulation for Example 3, which in-
deed exhibits convergence to the optimum; this behavior is
robust to initial conditions. The following statement claims
this behavior is quite general.

Theorem 4. Consider the Gauss-Seidel iteration where Z(t+1)
is generated from Z(t) by N successive steps of Problem 5, one
row at a time. Let the initial condition Z(0) ∈ Z satisfy zij(0) >
0 whenever aij = 1. Then any limit point Z∗ of Z(t) is a global
optimum of Problem 3.

A proof is given in Appendix A, by adapting the argu-
ment from a standard convergence result for Gauss-Seidel
algorithms in [2]. That result applies to an optimization over
Cartesian product, which is the case here as the constraints
(10) are decoupled for each of the rows of Z . The cost is
required to be continuously differentiable and convex, and
strictly convex in each component of the Cartesian product
when the others are held constant. These conditions hold
here as well, except at the boundaries zij = 0, zji = 0,
where our cost is not well-defined or tends to infinity.

By requiring that Z(0) uses initially all available peering
options, the initial problem is well defined and it is not
hard to see that this property will be preserved, zij(t) > 0
whenever aij = 1. However in the limit the boundary can be
approached, yielding z∗ij = 0 (and necessarily, z∗ji = 0) for a
pair of neighbors; indeed this may be the optimal allocation,
avoiding the use of a very inefficient link. We illustrate this
situation with an Example.

Example 4. Consider a line network of 4 nodes, with maximal
rate and resource sharing matrices M , Z below (p, q ∈ [0, 1]):

M =






0 2 0 0
2 0 1 0
0 1 0 2
0 0 2 0




 ; Z =






0 2 0 0
2p 0 1− p 0
0 1− q 0 2q
0 0 2 0




 ,

A simple analysis reveals that for any α > 0 the optimal cost
is achieved at p = q = 1, i.e. it is optimal not to use the
links between peers 2 and 3. Starting our Gauss-Seidel algorithm
from a random initial condition that uses all links, we observe
convergence. Indeed after 5 rounds of updates the matrix is already
using values of p and q of the order of 1 − 10−4, indicating the
undesirable link is being turned off.
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Extending the proof in [2] to accommodate this kind of
phenomenon is non-trivial, see Appendix A.

Remark 3. We are not claiming that the alternative cost J(Z)
could be also minimized by this algorithm, indeed Figure 2 shows a
small but nonzero gap, reflecting a difference between D(Z||ZT )
and D(s||r) at the convergence point. In the wireless case, the
equality conditions in Lemma 1 may not hold at the optimum of
Problem 3.

5 EFFICIENCY/RECIPROCITY TRADEOFF UNDER

INTERFERENCE

We now consider a second characteristic of wireless local
area networks: the use of a shared medium gives rise to
interference, preempting certain links from being activated
simultaneously. A typical case is when a common wireless
channel is used in the network, so nodes interfere with all
others within their range. Thus, medium access must be con-
trolled either by centralized scheduling or by decentralized
random access control.

The optimization of medium access in a wireless net-
work, and its interaction with other layers such as routing or
congestion control has been the subject of a large amount of
research, in particular within the setting of network utility
maximization, see [6], [12], [16] and references therein. In
this section we will extend the methodology to pursue the
efficiency/reciprocity tradeoff of interest.

A standard method of treating interference is to identify
the independent sets of links, which can transmit simultane-
ously with no interference. Consistently with our method of
analysis, we will represent each of these independent sets
through a binary matrix X ∈ {0, 1}N×N that identifies the
active links. All allowable independent sets are specified by
the class of configurations

X = {X1, . . . , Xk, . . . , XK} ⊂ {0, 1}N×N .

At any time instant, only one of such configurations can be
active. We remark that:

• Every X ∈ X has the hard zeros of the neighborhood
structure, xij = 0 whenever aij = 0.

• Independent sets in X need not be maximal: allowing
the temporary use of inefficient configurations is
often the only way to obtain tractable decentralized
solutions.

As in the previous section we introduce time-sharing
among configurations to achieve a richer mix of transmis-
sion rates. Let πk denote the probability (fraction of time)
configuration Xk is active. The possible time-shares are
given by the unit simplex in R

K ,

Π :=
{

π ∈ R
K : πk ≥ 0,

K∑

k=1

πk = 1
}

.

Also for each π ∈ Π denote by

P (π) =
∑

k

πk ·X
k. (20)

the matrix of fractions of time pij each link is activated. Let
P denote the set of all possible such P matrices over π ∈ Π.
P is the convex hull of X , and is thus convex.

Finally, we recall the matrix M of maximum transmis-
sion rates per link µij ; the effective transmission rate at the
link is zij = pijµij as before. In matrix form Z = M ◦ P ,
where ◦ denotes the componentwise (Hadamard) product;
the resulting set Z of possible allocation matrices is also
convex.

Remark 4. We can recast the situation of Section 4 in this more
general context. In that case the only interfering links are those
outgoing from the same peer i, who can only talk to one other
peer at once. So we can choose a set X of matrices with a single
“1” per row, of the structure defined by A.4 The corresponding set
P are the row-stochastic matrices of structure A, and the set Z
coincides with the one in (11).

Within this new set Z of allowable file-sharing matrices
we now study tradeoffs between efficiency and reciprocity,
through a reformulation of Problem 3:

Problem 6. Given a connectivity matrix A, a matrix of link
bandwidths M , a family of independent sets X , and the function
E(Z) defined in (14), solve

min
Z∈R

n×n
+

E(Z)

subject to Z = M ◦ P,

P ∈ P = co(X ).

This is a convex optimization problem; below, we will
seek distributed solution methods. We first discuss some
properties of optimal allocations.

5.1 Symmetry in allocations

The class X of independent set matrices is said to be
symmetric if X ∈ X =⇒ XT ∈ X ; i.e. reversing all peer
transmissions does not introduce interference. Note that:

• This does not mean the matrices X themselves are
symmetric; links (i, j) and (j, i) will in many situa-
tions not be active at once.

• The structure of Section 4 is not symmetric. For
instance in Example 1 we can have links 1-3 and 2-3
active at once, but not the other way round.

• If X is symmetric (closed under transposition), then
so is its convex hull P .

Remark 5. An important case of a symmetric class X occurs
in the 802.11 (WiFi) standard when the request-to-send/clear-to-
send option is activated. Here links (i, j) and (j, i) cannot be on
at once. Now, activating a link (i, j) requires a free medium (mea-
sured by carrier-sense), and a bidirectional (RTS/CTS) handshake
between nodes, which establishes that both the forward and back-
ward links are free of interference. In that case, if xij = 1, xji = 0
is allowed, so is xij = 0, xji = 1, with the rest unchanged. This
is a stronger condition than symmetry of X .

The following result concerns optimal allocations for
symmetric interference sets under the (restrictive) condition
of symmetric maximal rates.

4. These are all maximal independent sets; in that situation where
interference is within the node itself, there is no need to allow inefficient
configurations.
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Proposition 5. If X is symmetric, and M = (µij) = MT , then
Z is a symmetric set, and the optimum of Problem 6 is achieved
at a symmetric matrix (Z = ZT ).

Proof. ZT = (M ◦P )T = MT ◦PT = M ◦PT , so symmetry
of Z follows from that of P . In addition we observe that
E(Z) = E(ZT ), since R(Z) = R(ZT ) and

D(Z||ZT ) =
∑

i>j

zij log

(
zij
zji

)

+zji log

(
zji
zij

)

= D(ZT ||Z).

Then if Z is an optimal allocation, so is ZT and by convexity
the symmetric matrix 1

2 (Z + ZT ) must also be optimal.

5.2 Dual decomposition for the optimal tradeoff

As a first attempt towards decomposing Problem 6 between
the set of peer nodes, introduce the Lagrangian

L0(Z, π,Λ) := E(Z) + 〈Λ, Z〉 − 〈Λ,M ◦ P (π)〉,

where Λ is a matrix multiplier with the same structure
A, and 〈Λ, Z〉 =

∑

ij λijzij is the standard matrix inner
product. The last term above can be rewritten as

〈Λ,M ◦ P 〉 =
∑

ij

λijµij

pij
︷ ︸︸ ︷
∑

k

πkX
k
ij

=
∑

k

πk

∑

ij

λijµijX
k
ij

︸ ︷︷ ︸

wk(Λ)

,

where wk(Λ) is the weight of the schedule Xk ∈ X , obtained
by adding the weights λijµij of the active links in the
independent set. The vector w(Λ) ∈ R

K collects the weights
of all independent schedules.

The dual function corresponding to Problem 6 is found
by minimizing L0(Z, π,Λ) over the primal variables Z and
π. This optimization decomposes between the two primal
variables:

1) Minimization over Z ∈ R
N×N
+ , with structure A, of

E(Z) + 〈Λ, Z〉 =
∑

i,j

zij

[

log

(
zij
zji

)

− α+ λij

]

.

This problem is very similar to the one considered in
Section 4, and could be tackled with similar means.
Indeed, for fixed Λ a Gauss-Seidel iteration would
provide a decentralized solution.

2) Maximization over π ∈ Π of
∑

k

πkwk(Λ),

which amounts to the classical max-weight-
scheduling [21]: concentrate the probability mass
on the schedule Xk ∈ X with maximum weight
wk; if there are weight ties between schedules, any
convex combination thereof is optimal. This second
problem is of combinatoric complexity, given the
growth of the number of independent sets as a
function of link nodes. This is the main limitation
of the dual decomposition strategy.

Remark 6. Even if the complexity issue were not present, another
undesirable feature of max-weight scheduling for this problem are
oscillations around optimality. In the typical case where links
(i, j) and (j, i) interfere, no single independent set can achieve
reciprocity, so optimality requires allocating positive fractions of
time pij , pji to both links. This can only be enabled by equalizing
link weights, λ∗

ijµij = λ∗
jiµji. As the multiplier Λ varies close to

its optimum, this tie is broken and max-weight schedules “chatter”
very quickly. This phenomenon is common when using duality in
non-strictly convex problems.

To avoid the above difficulties we turn to an approxi-
mate allocation, following an approach proposed in [12] for
network utility maximization.

5.3 Markov approximation to optimal scheduling

In [12], Jiang and Walrand propose a distributed method
based on random access to a wireless medium, which com-
putes an approximation to the max-weight schedule. Other
related references around the same time are [17], [19]. A
clear and general presentation of this approach is given by
Chen et al. in [5], which we largely follow here.

Given a vector of weights for each independent set, the
idea is to select the following mix of schedules:

π̂τ
k (Λ) :=

e
wk(Λ)

τ

∑K
l=1 e

wl(Λ)

τ

, Xk ∈ X , (21)

where τ > 0 is a “temperature” parameter. As τ → 0+,
the above distribution π̂τ becomes concentrated on the
schedules of maximum weight.

The interest of such probability distribution is that it can
be computed in a decentralized way through a stochastic
process, which goes by the names of Gibbs sampler [4]
or Glauber dynamics [13]; when combined with a gradual
“cooling” of τ it is called Simulated Annealing [11].

Specifically, construct a continuous-time Markov chain
over the configuration space X , with transition rates

q(X,X + eij) = e
λijµij

τ 1{X+eij∈X}, (22a)

q(X,X − eij) = 1{X−eij∈X}. (22b)

Here eij denotes the matrix with a single ‘1’ in entry (i, j), so
transitions only add one new link or turn off an existing one.
Note that the exponent in (22a) amounts to the difference in
the weights of the schedules X and X + eij , from where
it follows that: π̂τ in (21) satisfies the detailed balance
equations5

π̂τ (X)q(X,X + eij) = π̂τ (X + eij)q(X + eij , X);

this implies the chain is time-reversible and its steady-state
distribution is π̂τ (Λ).

The above stochastic dynamics admit a fully decentral-
ized implementation in network links, provided that the
wireless network is endowed with carrier-sense multiple
access (CSMA) to determine which link activations keep the

5. In these balance equations we temporarily change notation, drop-
ping the dependence on Λ and writing π̂τ (X) instead of π̂τ

k
for the

schedule Xk = X .
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schedule within the non-interfering class X .6 In that case,
each link can regulate the aggressiveness with which its tries
to seize the medium in (22a), as a function of the current
weight.

Remark 7. For this to be a viable resource allocation strategy
implies that competition for the medium occurs at a much faster
time-scale than the adaptation of the weights Λ. Fortunately, this
is a natural situation in practical wireless networks, where for
instance 802.11 medium access works at the millisecond scale,
whereas the peer-to-peer reciprocity dynamics will typically occur
at the scale of seconds; for more discussion see our simulations
below.

Remark 8. In [26] (see also a summary in [18]), a Gibbs sampler
was used for the entire resource allocation, building a Markov
chain with transitions that reward efficiency and penalize an
integrated measure of the reciprocity discrepancy. Here we confine
the Markov dynamics to the scheduling component for given
multipliers. The slower-scale resource allocation will be optimized
below using convex techniques.

What is the relationship of this approximate schedule
with the original optimization? As explained in [5], [12], it
amounts to adding an entropy term to the weight maximiza-
tion objective, of the form

H(π) :=
∑

k

πk log

(
1

πk

)

, (23)

and solving for

max
π∈Π

〈Λ,M ◦ P (π)〉+ τH(π)

= max
π∈Π

∑

k

πk [wk(Λ)− τ log(πk)] . (24)

The above problem amounts to computing the Fenchel
conjugate of the convex negative entropy function −H(π)
over the probability simplex, evaluated at the vector of
weights w(Λ). It is easily checked (see [3]) that it has the
solution (21), and that the maximum in (24) is the log-sum-
exp function of the weights:

ϕτ (Λ) := τ log

(
∑

k

e
wk(Λ)

τ

)

. (25)

This is a convex function, a property that can be sharpened
in our situation.

Lemma 6. If X contains at least one schedule other than the
{eij}, then ϕτ (Λ) is strictly convex in Λ ∈ R

n×n
+ .

A proof is given in Appendix B. Note that the hypothesis
holds in all cases except the one where all links interfere
with each other and we do not allow the null independent
set X = 0. Since in particular in the Markov chain approach
the latter is always a possibility, the hypothesis is not restric-
tive.

6. Strictly speaking, CSMA may still give collisions due to the hidden
node problem; this effect is considered negligible in [12]. It can also be
avoided by enabling the request-to-send/clear-to-send option in 802.11.

Lemma 7. The gradient of ϕτ (Λ) (expressed as a matrix) is given
by:

∂ϕτ

∂Λ
=

[
∂ϕτ

∂λij

]N×N

i,j=1

= M ◦ P (π̂τ (Λ)). (26)

Proof. We compute the partial derivatives of ϕτ in (25) as
follows. Fix a link (i, j), then

∂ϕτ

∂λij

= τ
1

∑

k e
wk(Λ)

τ

∑

k

e
wk(Λ)

τ
∂wk

∂λij

1

τ

=
∑

k

π̂τ
k (Λ)µijX

k
ij

= µijpij(π̂
τ (Λ)).

5.4 A Primal - Dual approach to the optimal tradeoff

Armed with the above machinery, we are now ready to
formulate a distributed method for a set of wireless nodes
under interference to agree on (an approximation to) the
optimal efficiency-reciprocity tradeoff. The approach paral-
lels what was done in [5] for network utility maximization.
One technical difference is that our primal cost E(Z) is not
strictly convex as defined, in contrast to utility functions
which are assumed strictly concave.

Start by formulating the approximate tradeoff through
the addition of the entropy term to Problem 6:

Problem 7. Given a connectivity matrix A, a matrix of link
bandwidths M , a family of independent sets X , and the function
E(Z) defined in (14), solve

min E(Z)− τH(π)

subject to Z = M ◦ P (π),

Z ∈ R
n×n
+ , π ∈ Π,

where P (π), H(π) are given respectively by (20),(23).

The Lagrangian for this modified problem is

L(Z, π,Λ) = E(Z) + 〈Λ, Z〉 − [〈Λ,M ◦ P (π)〉+ τH(π)],
(27)

for which we seek a saddle point: minimum in (Z, π),
maximum in Λ. Again the primal variables appear suitably
decomposed, however we will not optimize over both at the
same time. Rather, consistently with the faster time-scale of
the medium access, we will assume that for fixed Z and Λ
the stochastic approach described above is used to optimize
the second part of (27), resulting in the mean schedule (21),
and the reduced Lagrangian

L̂(Z,Λ) := min
π∈Π

L(Z, π,Λ) (28)

= L(Z, π̂τ (Λ),Λ)

= E(Z) + 〈Λ, Z〉 − ϕτ (Λ),

with π̂τ from (21) and ϕτ (Λ) from (25). The following
statement is proved in Appendix B:

Proposition 8. If (Z∗, π∗,Λ∗) is a saddle point of L(Z, π,Λ),
then (Z∗,Λ∗) is a saddle point of L̂(Z,Λ). Conversely, if

(Z∗,Λ∗) is a saddle point of L̂(Z,Λ), then with π∗ = π̂(Λ∗)
from (21), (Z∗, π∗,Λ∗) is a saddle point of L(Z, π,Λ).
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We have thus reduced the optimization problem to find-
ing (at the slower scale of rate adaptation) a saddle point

of L̂(Z,Λ), which is convex in Z and strictly concave in Λ
due to Lemma 6. To achieve this purpose in a decentralized
way, we turn to a primal-dual dynamics, expressed below
in continuous time for some fixed parameters β > 0, γ > 0.

Ż = −β
∂L̂

∂Z
= −β

[

Λ +
∂E

∂Z

]

, (29a)

Λ̇ = γ
∂L̂

∂Λ
= γ

[

Z −
∂ϕτ

∂Λ

]

= γ [Z −M ◦ P (π̂τ (Λ))] ,

(29b)

where we have invoked (26). Writing these equations com-
ponentwise over the matrices, and recalling the definition of
E(Z) we have:

żij = −β

[

λij + log

(
zij
zji

)

−
zji
zij

+ 1− α

]

; (30a)

λ̇ij = γ [zij − µijpij ] , (30b)

where pij is the steady-state link utilization fraction ob-
tained from the stochastic dynamics in the medium access
(MAC) layer, which occurs at a faster time-scale. This means
that the right-hand side of (30b) is proportional to the excess
rate sent by the upper layers to the MAC queue, so λij is
proportional to the occupation of this queue, an attractive
feature for a decentralized implementation.

In regard to (30a), as in previous sections the only
information required to implement this gradient rule are
the current reciprocity fractions

zij
zji

of the exchange of node

i with other peers j, something that can also be measured.
The primal-dual dynamics is thus decentralized.

Proposition 9. Solutions (Z(t),Λ(t)) of (29a-29b) converge

asymptotically to a saddle point of L̂(Z,Λ). Thus, combined
with the mapping π(t) = π̂τ (Λ(t)) from (21) , the trajectory
(Z(t), π(t)) converges to a solution of Problem 7.

This convergence follows from Lyapunov methods of a
similar nature of those in [1], [10]. For completeness it is
provided in Appendix B. Note that we do not require strict
convexity of the primal cost, our damping is provided by
strict convexity of Lemma 6.

5.5 Simulation Example

To illustrate the behavior of the above procedure we imple-
mented in Matlab a discrete approximation to (29). Here
it is convenient to choose γ ≫ β. which helps conver-
gence due to the stronger convexity in the variable Λ. In
practical terms, it gives a higher priority to congestion
(balance of the MAC queue) than achieving the correct
efficiency/reciprocity tradeoff. For the MAC layer, we im-
plemented a stochastic simulation of the Markov chain (22).

To set time-scales in somewhat realistic terms, we consid-
ered the following. For a WiFi network of ∼ 100Mbps total
throughput, with packets of ∼ 104 bits, the medium access
rate is in the order of 104 packets (cycles of medium access)
per second. We can let the Markov chain access the medium
100 times with fixed weights λij , and still allow for update

steps every 0.01 seconds of the primal-dual dynamics. For
these steps we choose γ = 1, β = 0.01; in this way prices
react at the scale of 0.01 sec, whereas rates zij vary at
the scale of 1 sec, consistent with a reasonable schedule
of reciprocity (P2P network clients [7] commonly perform
updates every 10 sec).

We tested these algorithms in the 4 node network of
Figure 3. Nodes can exchange bidirectionally with their
immediate neighbors, node 1 having a faster transmission
rate than the rest. The corresponding matrix of maximum
exchange rates is

M =







0 2 0 2
1 0 1 0
0 1 0 1
1 0 1 0






.

1

42

3

2

21

1

1

1

1

1

Figure 3. Test network.

Assuming links interfere when they share a node among
their source or destination, the independent sets are: the
empty set, 8 single link schedules, and 8 two-link schedules
which activate opposite sides of the square, in all possible
directions. The temperature parameter was set at τ = 1. The
tradeoff parameter was set at α = 1.

Time (sec)

0 100 200 300 400 500

Z
ij

0

0.1

0.2

0.3

0.4

0.5

0.6

Z
12

,Z
14

Z
21

,Z
41

Z
23

,Z
32

,Z
34

,Z
43

Figure 4. Evolution of rates zij .
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Figure 5. Rates zij with idealized MAC layer.
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Figure 6. Evolution of multipliers λij .

Figures 4 and 6 show the time trajectories of peer
rates and the corresponding multipliers. For comparison
purposes we also plot in Figures 5 and 7 a simulation of
the primal-dual dynamics where the MAC layer is ideal-
ized, replacing the link probabilities by P (π̂τ ) where π̂τ is
given by (21). We observe a close match between the mean
behavior of the stochastic dynamics and the deterministic
counterpart: a damped oscillatory transient typical of this
kind of primal-dual dynamics. The multipliers have a nois-
ier behavior, consistent with their more aggressive update
schedule.

Three values of link rates emerge in steady state: the
largest for the faster links of node 1; an intermediate rate
for nodes 2, 4 attempting to reciprocate to node 1; the
lowest value for communications of nodes 2, 3, 4 amongst
themselves. So we see a network that successfully negotiates
the efficiency-reciprocity tradeoff.
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Figure 7. Multipliers λij with idealized MAC layer.

6 CONCLUSION

In this paper we have investigated the distinct objectives
of throughput efficiency and peer reciprocity which char-
acterize peer-to-peer exchange, successively incorporating
features of a wireless substrate: multiple-rate physical layers
and interference. In the first case, we have developed a de-
centralized reciprocity mechanism that provably optimizes
a tradeoff between overall throughput and peerwise KL
divergence. In the interference case, the optimal tradeoff
can be decomposed into the natural layers of rate allocation
and link scheduling. The latter is difficult to solve, but a
Markov approximation method was developed along the
lines of [5], [12], leading to a primal-dual dynamics that
converges to an approximation of the optimal tradeoff and
can be implemented in a decentralized manner.

APPENDIX A. PROOF OF THEOREM 4

The sequence Z(t) obtained from the Gauss-Seidel iteration
belongs to a compact set Z given in (11); consider a sub-
sequence Z(tk) that converges as k → ∞ to a limit point
Z∗ ∈ Z . By definition z∗ij ≥ 0 for all links with aij = 1.

The cost E(Z(t)) is monotonically decreasing and lower
bounded, so it has a limit. However since the cost includes
the terms

d(zij , zji) = zij log

(
zij
zji

)

+ zji log

(
zji
zij

)

which are not continuous at zero, it is important to isolate
the links, if any, where the limit z∗ij = 0. A first observation
is that if z∗ij = 0, then necessarily z∗ji = 0. Otherwise
d(zij(tk), zji(tk)) → ∞ due to its second term, which
implies E(Z(tk)) → ∞, contradicting the fact that it is
decreasing.

Let us then classify the links in two classes L = L+∪L0,
those with positive and zero limits, denoting the respec-
tive incidence matrices by A+, A0, both symmetric, with
A = A+ + A0. In general, for matrix Z ∈ Z we denote by
Z+, Z0 its projections over the respective link sets, i.e. the
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Hadamard products Z+ = Z ◦A, Z0 = Z ◦A0. We can also
break down the cost (14) in two terms as

E(Z) = E+(Z+) + E0(Z0), (31)

E0(Z0) :=
∑

i,j: a0
ij=1

zij

[

log

(
zij
zji

)

− α

]

, (32)

E+(Z+) :=
∑

i,j: a+
ij
=1

zij

[

log

(
zij
zji

)

− α

]

. (33)

Focusing on the subsequence tk, we note that

lim inf
k→∞

E(Z(tk)) = lim inf
k→∞

[E+(Z+(tk)) + E0(Z0(tk))]

= E+(Z∗) + lim inf
k→∞

E0(Z(tk))

≥ E+(Z∗). (34)

The first step uses (31), the second follows since Z+(tk) →
Z∗, a point where E+(·) is continuous. The last inequality
is due to the fact that the efficiency terms in (32) vanish and
the divergence part is non-negative.

The Gauss-Seidel iteration proceeds in rounds of length
N , in which the rows are successively updated. Given Z(t),
denote by Y l(t) the matrix where the first l rows have been
replaced by the corresponding ones for Z(t + 1). Note that
cost is reduced in each step,

E(Z(t)) ≥ E(Y 1(t)) ≥ . . . E(Y l(t)) ≥ . . . ≥ E(Z(t+ 1)).

Consider now a modified Gauss-Seidel round Y l,+(tk),
l = 1, . . . , N − 1 starting at the projection Z+(tk), and
optimizing only over the links in L+ with the portion E+(·)
of the cost.

Lemma 10. limk→∞ E+(Y l,+(tk)) = E+(Z∗).

Proof of Lemma. We first note that from the monotonicity of
the cost sequence

E+(Z+(tk)) ≥ E+(Y 1,+(tk)) ≥ . . . E+(Y N−1,+(tk)),

we have the upper bound

lim sup
k→∞

E+(Y l,+(tk)) ≤ E+(Z∗), l = 1, . . . , N − 1. (35)

To establish a lower bound, consider the first iterate
Y 1,+(tk), and perturb it to a matrix Ỹ 1(tk), as follows:
include in the links (1, j) ∈ L0, if any, the term ỹ1j(tk) =
zj1(tk) so that the corresponding divergence term disap-
pears, and the contribution to the efficiency is of the order
of

δk := max
(1,j)∈L0

zj1(tk),

which goes to zero as k → ∞.

To ensure the first row in Ỹ 1(tk) stays within the feasibil-
ity constraint Zi in (10) requires suitable reductions in some
of the links (1, j) ∈ L+; however since these occur around a
point y1,+1j > 0 where the cost is smooth, their contribution
to the overall cost is also of the order of δk. This means that

E(Ỹ 1(tk)) = E+(Y 1,+)(tk) +O(δk).

As constructed, Ỹ 1(tk) is a feasible point in the first step of
the original Gauss-Seidel iteration starting from Z(tk), which
had optimum Y 1(tk). Hence

E+(Y 1,+)(tk) +O(δk) ≥ E(Y 1(tk))

≥ E(Z(tk + 1))

≥ E(Z(tk+1)).

Taking liminf in the preceding expression as k → ∞ leads
to

lim inf
k→∞

E+(Y l,+(tk)) ≥ lim inf
k→∞

E(Z(tk+1)) ≥ E+(Z∗),

where we invoked (34). This, together with (35), establishes
the lemma for l = 1. An analogous procedure can be used
for the remaining (finite number of) Gauss-Seidel iterates
Y l,+(tk).

We can are now in similar conditions to those in the
proof of Prop 3.8, Section 3.3.5 of Bertsekas and Tsitsiklis
[2]. We have a sequence Z+(tk) convergent to Z∗, a point
where the reduced cost E+(·) is continuous, and such that
the resulting round of Gauss-Seidel iterates Y l,+(tk) have
the same limiting cost E+(Z∗). 7

The proof in [2] can now be emulated directly with the
above sequences, we provide only a sketch. One must show
first that the change Y 1,+(tk) − Z+(tk) in the first G-S
update goes to zero with k, by a contradiction argument
that relies on the common asymptotic cost E+(Z∗), and the
strict convexity of the function E+ as a function of the first
row. From here it follows that the common limit Z∗ must be
minimizing in the first component, when the others are held
fixed, which gives a gradient condition

〈∇1E
+(Z∗), Z1 − Z∗

1 〉 ≥ 0 ∀ Z1 ∈ Z1.

Repeating the procedure in the following G-S updates pro-
vides analogous conditions for other components of the
gradient ∇E+(Z∗), implying Z∗ must be an optimum of
E+(·). Under our convention (7) the term E0(Z∗) = 0, so
the overall cost is minimized.

APPENDIX B. PROOFS OF SECTION 5

Proof of Lemma 6

Proof. Without loss of generality set τ = 1. The Hessian of
the log-sum-exp function f(w) = log (

∑

k e
wk) is computed

in [3] and shown to verify ∇2f ≥ 0; it follows also that
its null-space ker[∇2f ] has dimension 1, spanned by 1, the
vector of all ones.

The function ϕ(Λ) is the composition of f with the
linear function w(Λ). For convenience represent the latter
as w = Bvec(Λ), where vec(Λ) contains the λij in vector
format, and B is an incidence matrix between links and
independent sets, multiplied by the diagonal matrix of the
(µij). In this format we have

∇2ϕ = BT∇2fB ≥ 0.

7. A subtle point: we are not claiming that the G-S iteration from
Z+(tk), continued beyond the first round, is consistent with the next
point Z+(tk+1) down the line. The proof of [2] invokes this fact only
to argue that the intermediate G-S iterates have the same limiting cost.
Here we have established this specifically in Lemma 10.
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For a vector v to be in ker(∇2ϕ) requires Bv ∈ ker[∇2f ]
and hence Bv = c1, c ∈ R. Now since X contains the
individual link schedules eij , then we must have µijvij = c
for every link. But by hypothesis there is at least one more
independent set with a number of links l 6= 1. That schedule
would give an entry lc in Bv, therefore it must be that c = 0,
hence v = 0. We conclude ∇2ϕ is positive definite and hence
ϕ is strictly convex.

Proof of Proposition 8

Proof. For the direct implication, start with a saddle point
(Z∗, π∗,Λ∗) of L. In particular π∗ is the minimizer over this

variable π, so by (28) we have L̂(Z∗,Λ∗) = L(Z∗, π∗,Λ∗).
Also, starting with L(Z∗, π∗,Λ∗) ≤ L(Z, π,Λ∗) and

minimizing over π with fixed Z yields

L̂(Z∗,Λ∗) ≤ L̂(Z,Λ∗) ∀Z.

Allowing now variations in Λ we can write

L̂(Z∗,Λ∗) = L(Z∗, π∗,Λ∗) ≥ L(Z∗, π∗,Λ)

≥ min
π∈Π

L(Z∗, π,Λ) = L̂(Z,Λ),

establishing the saddle point condition in L̂.
For the converse implication, start with a (min-max)

saddle point (Z∗,Λ∗) of L̂, and set π∗ = π̂(Λ∗). We have

L(Z∗, π∗,Λ∗) = L̂(Z∗,Λ∗) ≤ L̂(Z,Λ∗)

≤ L(Z, π,Λ∗) ∀π ∈ Π.

This shows the minimization part of the saddle condition

in L. For the maximization part: note that since L̂(Z∗,Λ) is
maximized in Λ = Λ∗, and strictly concave, we have the
first order condition

0 =
∂L̂

∂Λ
(Z∗,Λ∗) = Z∗ −

∂ϕτ

∂Λ
(Λ∗) = Z∗ −M ◦ P (π∗),

where we invoked (26). But then we see that L(Z∗, π∗,Λ)
is independent of Λ and thus maximized in particular at
Λ = Λ∗.

Proof of Proposition 9

Proof. Consider any saddle point (Z∗,Λ∗) (min in Z , max

in Λ) of L̂(Z,Λ). Define the Lyapunov function

V (Z,Λ) =
1

2β
‖Z − Z∗‖2F +

1

2γ
‖Λ− Λ∗‖2F ,

where ‖ · ‖F is the Frobenius norm, associated with our
matrix inner product. Differentiating along trajectories of
(29) gives

V̇ =
1

2β
〈Z − Z∗, Ż〉+

1

2γ
〈Λ − Λ∗, Λ̇〉

= 〈Z∗ − Z,
∂L̂

∂Z
(Z,Λ)〉+ 〈Λ− Λ∗,

∂L̂

∂Λ
(Z,Λ)〉

≤ [L(Z∗,Λ)− L(Z,Λ)] + [L(Z,Λ)− L(Z,Λ∗)] (36)

= [L(Z∗,Λ)− L(Z∗,Λ∗)]
︸ ︷︷ ︸

≤0

+ [L(Z∗,Λ∗)− L(Z,Λ∗)]
︸ ︷︷ ︸

≤0

.

(37)

Here the inequalities in (36) are first-order conditions for

convexity in Z , concavity in Λ of L̂(Z,Λ). The inequalities
in (37) follow from the saddle point assumption.

Thus the dynamics is stable in the broad sense. To
analyze asymptotic stability, note first that if V̇ = 0 then
all the above inequalities must be equalities. In particular,
due to the strict concavity in Λ that follows from Lemma 6,
this can only happen when Λ = Λ∗.

If a trajectory (Z(t),Λ(t)) moves entirely within the set
{(Z,Λ) : V̇ = 0}, then Λ(t) ≡ Λ∗. But then Λ̇ ≡ 0 so
from (29b) we have Z(t) ≡ M ◦ P (π̂τ (Λ∗)), and the point
must be in equilibrium. By construction of the primal-dual
dynamics, all equilibria are saddle points.

So the only invariant sets within {(Z,Λ) : V̇ = 0} are
equilibrium points; the LaSalle Invariance principle implies
that all trajectories converge to one such saddle points, as
claimed.
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