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Abstract—Rate allocation among a fixed set of end-to-end
connections in the Internet is carried out by congestion control,
which has a well established model: it optimizes a concave
network utility, a particular case of which is the alpha-fair
bandwidth allocation. This paper studies the slower dynamics of
connections themselves, that arrive randomly in the network and
are served at the allocated rate. It has been shown that under the
condition that the mean offered load at each link is less than its
capacity, the resulting queueing system is stochastically stable, for
the case of exponentially distributed file-sizes. The conjecture that
the result holds for general file-size distributions has remained
open, and is very relevant since heavy-tailed distributions are
often the best models of Internet file sizes.

In this paper, building on existing fluid models of the sys-
tem, we use a partial differential equation to characterize the
dynamics. The equation keeps track of residual file size and
therefore is suitable for general file size distributions. For alpha
fair bandwidth allocation, with any positive alpha parameter, a
Lyapunov function is constructed with negative drift when the
offered load is less than capacity. With this tool we answer the
conjecture affirmatively in the fluid sense: we prove asymptotic
convergence to zero of the fluid model for general file-size
distributions of finite mean, and finite-time convergence for those
of finite p > 1moment. In the stochastic sense, we build on recent
work that relates fluid and stochastic stability subject to a certain
light-tailed restriction. We further provide the supplementary
fluid stability argument to establish the conjecture for this class
that includes phase-type distributions. Results are supplemented
by illustrative network simulations at the packet level.

I. INTRODUCTION AND PRIOR WORK

A fundamental step in the understanding of resource

allocation mechanisms in the Internet has been the for-

mulation by Kelly et al. [10] of congestion control in terms of

network utility maximization. In a scenario of a fixed number

of connections across routes in a network, this approach

characterizes an equilibrium and leads to the formulation of

dynamic, distributed methods to achieve it. An interesting

class of utility functions is the “α-fair” family of Mo and

Walrand [18]; by varying the α parameter it encompasses

various notions of flow-level fairness, in particular propor-

tional fairness (α = 1) and max-min fairness (α → ∞).

These notions are commonly used to describe various current

or proposed network protocols (e.g., [1], [25]).

However, this analysis with fixed numbers of connections

does not capture the reality that flows come and go in

the network, a situation better modeled through stochastic

processes. This issue was identified by Roberts and Massoulié

[21], who studied queueing systems with random arrivals and

workloads, and a processor sharing discipline where service

rates depend on bandwidth allocation, assumed to occur at a

faster time-scale. This leads to a basic stability question, first

posed by De Veciana et al. [7]: under which connection level

demands (job arrival rate and mean workload) is the resulting

queueing process stable? The answers given in [7] apply to

Poisson arrivals and exponentially distributed job sizes, and

max-min fair or proportionally fair bandwidth allocation. In

this case the numbers of connections per route form a Markov

chain, which is shown to be stable (i.e., ergodic) under the

natural stability condition: namely, that the mean load in each

link of the network is strictly less than the link capacity. In a

subsequent paper by Bonald and Massoulié [3], these results

were generalized to the α-fair case; other utility functions are

considered in [26]. Further extensions include relaxing the

time-scale separation [14] and relaxing the model of fixed-

capacity links [15].

We note that the natural condition is not sufficient for

all allocation policies, such as when the network seeks to

maximize instantaneous throughput (α = 0, see [3]) or under

certain forms of prioritization. For a demonstrative example

we refer to Section VI. Verloop et al. [24] show that the

form of scheduling that is optimal for a single link (shortest

remaining processing time, SRPT) can cause networks to

be unstable even if the maximum individual link utilization

approaches 0. The intuition is that a flow on a multi-link path

can be bottlenecked by flows on any one of its links, leaving

other links under-utilized at some instant; if the bottleneck link

shifts as flows arrive and depart, the multi-link path could be

unstable even though the mean load on each link is strictly

less than its capacity.

Therefore the cited stability results establish a non-trivial

fact. They are, however, critically restricted by the assumption

of exponentially distributed inter-arrival times and file sizes.

The latter is particularly unsatisfactory, since it has been

observed that file sizes in the Internet follow a heavy tailed

Pareto-type distribution [5]. This has motivated recent efforts

in extending the stability results for general file-size distribu-

tions. Removing the exponential file-size assumption is “well-

known to be a difficult problem” [14]; without it, the number

of ongoing connections is no longer a Markov state. Some

existing partial results are the following: [16] has showed

that for α = 1, the stability result can be generalized to an

appropriate Jackson-type routing scheme, thus providing the

tool to establish the condition for phase-type file distributions;

[12] gives a result for phase-type file distribution and general

α, in two particular network topologies through Lyapunov
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functions obtained numerically; [27] proves stability for quite

general arrival and service times in both stochastic and worst-

case settings, for a variant in which at most one flow on each

route is allocated capacity at a given time.

A strategy that has proven relevant for this problem is the

use of fluid limits, already invoked in [3] and further studied

in [11], for the exponential case. The extension to general

distributions is developed by Gromoll and Williams [8], [9],

as briefly reviewed in Section II. Based on these models, [4]

obtains a stability result for general file size distributions of

bounded support, for a sufficiently small α. In [8] it is also

established that the stability condition guarantees the fluid

model is stable in the special cases of linear and tree networks.

In a recent thesis by Lee [13], the connection between fluid

and stochastic stability was investigated, for the models of [9]:

it was found that under a certain “light-tailed” restriction on

the distribution (which includes phase-type, but not Pareto)

fluid stability indeed implies stochastic stability. The main

missing piece is then to establish, for these models, that fluid

stability holds under the natural condition on the loads. This

is the subject of the present paper.

First, in Section II we build on the results of [8], [9] and

obtain a fluid model of the process in terms of a partial

differential equation (PDE) for the distribution of remaining

job workloads. A main step in Section III is to show that

the natural stability condition allows for the construction of a

Lyapunov function with negative drift along trajectories of the

PDE, regardless of the job size distribution and the underlying

network topology, and for any value of α. In Section IV we

use this tool to prove fluid stability results: asymptotic conver-

gence to zero of the state in the general case, and finite-time

convergence under a mild moment condition satisfied with

great generality, including the heavy-tailed case. Some of the

above material appeared in the conference paper [20], although

the finite-time result is new. In Section V we reconsider the

stability question in the original, stochastic queueing model.

We show that for the distribution class considered in [13] the

required fluid stability assumptions are indeed satisfied, and

thus the problem is closed for this class. Section VI provides

a set of packet-level simulations to demonstrate the validity of

the models and the relevance of the results to real networks.

II. PROBLEM FORMULATION AND PARTIAL DIFFERENTIAL

EQUATION MODEL

The problem under consideration is the stability of a

queueing system in which customers are flows that arrive at

various routes, and are served according to rates allocated by

a congestion control algorithm. The latter is modeled through

the network utility maximization problem

max
∑

m:zm>0

zmUm

(

ϕm

zm

)

, subject to
∑

m

Rlmϕm ≤ cl.

(1)

Here m denotes the route, zm the number of connections in

the route, and ϕm the total allocated rate of all connections

of route m1. Matrix R is the routing matrix (Rlm = 1 if

1Only routes with a nonzero number of connections participate in the
resource allocation, the rest receive ϕm = 0.

route m uses link l and zero otherwise) and c = (cl) the

vector of link capacity constraints. The utility function Um is

assigned to each connection as a function of its per-flow rate

xm = ϕm/zm. For background on these models we refer to

[22]. In this paper we focus on the “α-fair” utility functions

introduced in [18], where U ′
m(x) = x−α for some strictly

positive α.
From a modeling perspective, this does not assume any

particular scheduling discipline, buffer size or active queue

management (AQM) settings. When all flows see the same

congestion price, such as under first-in-first-out scheduling,

the capacity allocation is determined by the senders, with

congestion control algorithms such as Reno [1] and FAST [25]

approximating α-fairness with α = 2 and α = 1 respec-

tively. Similarly, under round-robin scheduling flows achieve

approximate max-min (α = ∞) fairness for a wide range of

congestion control algorithms.

Given z = (zm), it is assumed the congestion control sets

ϕ = (ϕm) to the optimum of (1); we assume separation

of time-scales, i.e. the mapping z 7→ ϕ is instantaneous.

This assumption is standard in most of the literature, with

the exception of [14]; we will require this to maintain the

tractability of the model.

Remark 1. A property of α-fair utility functions (with common
α across routes) is that the resource allocation is invariant

under scaling: namely, if all zm are scaled by a common

factor r, the resulting ϕm do not change.

Consider now a network where flows arrive at route m
through a stochastic process of mean intensity λm > 0, and
a general distribution of the file sizes: let Gm(σ) be the

complementary cumulative distribution function (CCDF), i.e.

the probability that the file size is greater than σ. The mean

file-size is given by

1

µm
=

∫ ∞

0

σ [−dGm] =

∫ ∞

0

Gm(σ)dσ,

assumed to be finite. At any given time, active flows are served

with the rate ϕm/zm that results from (1).

The arrival process is independent of the number of flows at

all earlier points in time. In particular, this excludes “closed

loop” traffic models in which the completion of flow may

cause a user to request another. The present “open loop” model

is appropriate when each independent user initiates a single

flow, or stream of contiguous flows.

The aim is to prove that if the loads ρm := λm/µm strictly

satisfy the network capacity constraints,
∑

m

Rlmρm < cl ∀l, (2)

then the queueing system is stable2. This result, if true in

generality, implies for practitioners that provisioning a net-

work to accommodate the mean loads suffices for stabilization,

provided the underlying resource allocation corresponds to

some form of α-fairness.

2We emphasize that in this model queue occupancy is the number of flows
on a path, not the amount of data in a buffer. The stability issue thus decouples
from buffer size considerations.
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The classically studied case [7], [3] is when the arrival

process is Poisson, and the file distribution exponential. In that

case the process is a Markov chain with state z = (zm), and
stability means positive recurrence [2]. For the general case,

the system state requires substantially more information, as

discussed later on. We now turn our attention to fluid models

for this problem, which are the basis of our stability studies.

A. Fluid model

We first recall the fluid model for the exponential case,

following [3], [11]. This is obtained in the limit by scaling

time and the initial condition of the process, leaving fixed the

network capacity and the external load. Let r be the scaling

parameter, and define zr(0) = rz(0), where ‖z(0)‖ = 1 in a

suitable vector norm. If zr(t) is the resulting stochastic process
as described above, the fluid limit is defined by

Z(t) = lim
r→∞

zr(rt)

r
.

Invoking the strong law of large numbers, [3] writes the

following ordinary differential equation model:

dZm

dt
= λm − ϕm(t)µm (3)

for each m. Here ϕm(t) corresponds to the service rate with

re-scaled time3. Due to the scale invariance of the resource

allocation (see Remark 1) the fluid versions of ϕ and Z are

still related by the the analog of (1), i.e. ϕ(t) is the maximizer

of

max
∑

m:Zm>0

ZmUm

(

ϕm

Zm

)

, s.t.
∑

m

Rlmϕm ≤ cl. (4)

We now state a basic inequality that will characterize the

resource allocation. It follows directly from the fact that at the

optimal point of (4), the feasible set must be inside a negative

half-space defined by the gradient vector.

Lemma 1. Let (ϕm) be the vector of rates that optimizes (4),
and (ψm) another vector of rates satisfying the constraints
∑

mRlmψm ≤ cl. Then:

∑

m:Zm>0

U ′
m

(

ϕm

Zm

)

(ψm − ϕm) ≤ 0. (5)

B. Behavior at Zm = 0

The model (3) applies while Zm > 0, it must be appropri-

ately modified to include the behavior when Zm(t) reaches

zero.

To understand the behavior in this case, consider the fol-

lowing example: a network with a single link of capacity

c, and a single class m, such that ρm = λm/µm < c. In
this case, whenever Zm(t) > 0 we have ϕm = c, therefore
Zm(t) decreases linearly to zero following (3). When Zm

reaches zero, then by definition ϕm suddenly becomes zero (a

discontinuity); but then the arrivals term λm would move Zm

3We refer to [11] for more extensive details on this type of scaling.

again into positive values: this “chattering” behavior around

Zm = 0 is modeled by replacing (3) with

dZm

dt
=

{

λm − ϕm(t)µm if Zm(t) > 0;

0 if Zm(t) = 0,
(6)

which allows the state to remain at Zm = 0.
In the previous example, staying at zero is the steady-

state equilibrium behavior. In more complex networks, the

trajectory may be such that Zm spends an interval of time

at zero and later departs to Zm > 0; this may happen if the

capacity available for route m later moves below ρm due to

competition from other routes that share a bottleneck with m.

In that case, equation (6) exhibits non-uniqueness of solutions,

since it still allows the solution Zm ≡ 0. While this solution

should be ruled out for physical reasons, the model (6) is less

descriptive and allows it. The same issue appears with the

PDE model (13) to be introduced below. In terms of stability

studies, however, this issue does not create a difficulty: if we

show that all solutions to this broader model converge to zero,

in particular the “physical” one will.

C. PDE Model

In the general distribution case, bandwidth allocation is

still a function only of the numbers of flows per route,

Z = (Zm). However, once we remove the memoryless

property of the exponential distribution, characterizing the

network state requires keeping track of residual file-sizes, not

just their number. Furthermore, the resource allocation per

route is a processor sharing discipline, where all flows present

receive equal service. This complicates the description since

we must keep track of residual file sizes of all flows. In order

to proceed, we look at the problem in more detail by modeling,

in a fluid setting, the evolution of the residual file distribution.

Let Fm(t, σ) (t ≥ 0, and σ ≥ 0) be the number of class

(route) m files at time t with residual file size larger than σ,
in the fluid limit. Fm(t, σ) is a finer descriptor of the system

than Zm(t), indeed the definition implies

Zm(t) = Fm(t, 0). (7)

We now model the evolution of Fm(t, σ) through the

following partial differential equation:

∂Fm(t, σ)

∂t
=
∂Fm(t, σ)

∂σ

ϕm(t)

Zm(t)
+ λmGm(σ). (8)

The above equation holds under the assumption that Zm(t) >
0; again it will be suitably complemented for Zm = 0 in (13)

below.

Note that (8) reduces to (3) in the exponential file size

distribution case, Gm(σ) = exp(−µmσ). This can be readily

checked by using Fm(t, σ) = Zm(t) exp(−µmσ) in (8),

which reduces it to (3).

D. An intuitive derivation of the PDE

At time t + dt, jobs that have residual file size at least σ
come from two sources:
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• New arrivals between t and t+ dt of size greater than σ.
With arrival rate λm, we have λmdt Gm(σ) such jobs,

in the fluid limit.

• Files already present at time t, which had at that time

a residual size of at least σ + ϕm(t)
Zm(t)dt. Note each file

receives a service rate ϕm(t)/Zm(t).

Therefore

Fm(t+ dt, σ) = Fm

(

t, σ +
ϕm(t)

Zm(t)
dt

)

+ λmGm(σ)dt.

Subtracting Fm(t, σ) from both sides and dividing by dt gives

Fm(t+ dt, σ)− Fm(t, σ)

dt
=

Fm

(

t, σ + ϕm(t)
Zm(t)dt

)

− Fm(t, σ)

dt
+ λmGm(σ).

In the limit when dt→ 0 we obtain (8).

E. A formal justification based on [9]

We now explain how to relate (8) to the rigorous fluid limit

set up in Gromoll and Williams [9].

In this formulation, the system state is characterized by a

time-dependent, positive measure ζm(t) for each class (route)

m. The measure is defined over the positive real numbers,

representing distribution of residual workload. In particular, in

the stochastic model ζm(t) at any given time is a finite sum

of Dirac deltas, located at the sizes of remaining workloads

for currently active jobs. The integral of this measure is the

number of active jobs Zm(t).
In the fluid limit under appropriate scaling, the limiting

measure ζm(t) satisfies (for all t except a set of Lebesgue

measure zero) the following:

d

dt
〈f, ζm(t)〉 =

{

−ϕm(t)
Zm(t) 〈f

′, ζm(t)〉+ λm〈f, νm〉, for Zm > 0;

0, for Zm = 0.
(9)

This equation coincides with (5.62) in [9], modulo notational

changes. Here the measure νm represents the probability

distribution of arriving jobs; f(σ) is an arbitrary bounded and

continuously differentiable test function in the class

C = {f ∈ C1
b (R+), f(0) = f ′(0) = 0};

and 〈f, ν〉 :=
∫∞

0 f(σ)dν.
In this model, the probability of an arriving job being larger

than σ, and the number of jobs at time t with residual workload
greater than σ, are represented by

Gm(σ) :=

∫ ∞

σ

dνm; Fm(t, σ) :=

∫ ∞

σ

dζm(t).

To derive the PDE we assume that the measures νm and ζm(t)
are absolutely continuous with respect to Lebesgue measure.

In particular,

dνm = −G′
m(σ)dσ, dζm(t) = −

∂Fm(t, σ)

∂σ
dσ.

By integration by parts we have the following identities:

〈f, νm〉 = −

∫ ∞

0

f(σ)G′
m(σ)dσ

= −f(σ)Gm(σ)
∣

∣

∣

∞

σ=0
+

∫ ∞

0

f ′(σ)Gm(σ)dσ.

〈f, ζm(t)〉 = −

∫ ∞

0

f(σ)
∂Fm(t, σ)

∂σ
dσ

= −f(σ)Fm(t, σ)
∣

∣

∣

∞

σ=0
+

∫ ∞

0

f ′(σ)Fm(t, σ)dσ.

Due to the definition of the class C, the incremental terms

above vanish, which turns (9) into

d

dt

∫ ∞

0

f ′(σ)Fm(t, σ)dσ =
ϕm

Zm

∫ ∞

0

f ′(σ)
∂Fm(t, σ)

∂σ
dσ

+λm

∫ ∞

0

f ′(σ)Gm(σ)dσ,

for the case Zm > 0. Assuming the differentiation with respect

to t on the left can be interchanged with integration, the above

yields

∫ ∞

0

f ′(σ)D[Fm(t, σ)]dσ = 0,

where D[·] is the differential operator given by

D[Fm] :=
∂Fm

∂t
−
∂Fm

∂σ

ϕm(t)

Zm(t)
− λmGm(σ).

Since f ′(σ) is a free continuous function, we must have

D[Fm] ≡ 0, i.e. (8).

Remark 2. [9] contains integral versions of (9), which define

the PDE in the distributional sense beyond the above assump-

tions (absolute continuity, differentiation under the sign). We

will not pursue this issue here, and assume a solution F (t, σ)
to (8) of enough smoothness to allow for a classical treatment.

F. Locally integrating the PDE

It will also be convenient to have an integral form for the

PDE solution. We state the following.

Proposition 2. Consider a solution F of (8) such that

Zm(t) > 0 in t ∈ [t0, t1]. Denote xF,m(t) = ϕm(t)
Zm(t) for this

F . Then for any (t, σ) ∈ [t0, t1]× R+ we have

Fm(t, σ) = Fm

(

t0, σ +

∫ t

t0

xF,m(τ) dτ

)

+λm

∫ t

t0

Gm

(

σ +

∫ t

T

xF,m(τ) dτ

)

dT. (10)

Proof: For simplicity we omit the subindex m. Note from

continuity of Z(t) and boundedness of ϕ(t) that xF (t) is

bounded in the interval [t0, t1], so the integrals above are well

defined, and finite.

Define F̃ (t, σ) to be the right-hand side of (10). It remains

to show that F (t, σ) = F̃ (t, σ) for all t ≥ t0 and σ ≥ 0. By



5

differentiation,

∂F̃ t, σ)

∂t
=
∂F

∂σ

(

t0, σ +

∫ t

t0

xF (τ) dτ

)

xF (t)

+λG(σ) + λ

∫ t

t0

G′

(

σ +

∫ t

T

xF (τ) dτ

)

dTxF (t)

=
∂F̃ (t, σ)

∂σ
xF (t) + λG(σ).

This has a similar form to (8), differing in the use of xF (t)
defined in terms of F , in place of xF̃ (t) defined in terms of F̃ .
The similarity suffices to show that indeed F̃ ≡ F , as follows.
Define

∆(t, σ) := F (t, σ)− F̃ (t, σ),

which is a solution to the homogeneous equation

∂∆(t, σ)

∂t
=
∂∆(t, σ)

∂σ
xF (t), ∆(t0, σ) ≡ 0,

where the boundary condition holds since F̃ (t0, σ) =
F (t0, σ). Consider now the mapping

Γ(t, σ) =

(

t, σ +

∫ t

t0

xF (τ)dτ

)

.

Γ is a diffeomorphism between [t0, t1]× R+ and the set

R := {(t, σ) : t ∈ [t0, t1], σ ≥

∫ t

t0

xF (τ)dτ}.

By composition define a function on R,

Φ(t, σ) := ∆ ◦ Γ−1(t, σ) = ∆

(

t, σ −

∫ t

t0

xF (τ)dτ

)

.

By differentiation we obtain for any (t, σ) ∈ R,

∂Φ(t, σ)

∂t
=
∂∆(t, σ)

∂t
−
∂∆(t, σ)

∂σ
xF (t) = 0. (11)

Also, Φ(t0, σ) ≡ 0. Note that for any (t, σ) ∈ R, the line

segment [t0, t]×{σ} is contained inR, therefore by integration

of (11) in this segment we have Φ(t, σ) ≡ 0 on R. Therefore

∆ = Φ◦Γ is also identically zero, which establishes (10).

The solution form (10) also applies to open intervals in

which Zm(t) > 0, as is now shown.

Corollary 3. Consider a solution F of (8) such that Zm(t) >
0 in t ∈ (t0, t1). Then (10) holds for any (t, σ) ∈ (t0, t1)×R+.

In particular, if Zm(t0) = 0 it takes the form

Fm(t, σ) = λm

∫ t

t0

Gm

(

σ +

∫ t

T

xF,m(τ) dτ

)

dT. (12)

Proof: If Zm(t0) > 0 then this is a special case of

Proposition 2. It remains to consider the case Zm(t0) = 0.
For t ∈ (t0, t1), consider a ta ∈ (t0, t). Applying Proposition

2 to [ta, t] gives

Fm(t, σ) = Fm

(

ta, σ +

∫ t

ta

xF,m(τ) dτ

)

+λm

∫ t

ta

Gm

(

σ +

∫ t

T

xF,m(τ) dτ

)

dT.

Now consider the limit as ta ↓ t0. The left hand side remains

constant. Since Gm is bounded, the second term tends to the

right hand side of (12). The first term is bounded below by

zero and above by Fm(ta, 0), which tends to Fm(t0, 0) =
Zm(t) = 0 by continuity of Fm.

III. LYAPUNOV BOUNDS

In this section we present a Lyapunov function and bounds

on its derivative, which will be used in the later sections to

prove that network stability holds when the loads satisfy the

capacity constraints (2). Before proceeding we recapitulate the

partial differential equation model

∂Fm(t, σ)

∂t
=







∂Fm(t,σ)
∂σ

ϕm(t)
Zm(t) + λmGm(σ) Zm > 0,

0 Zm = 0,
(13)

and establish some basic facts involving the residual workload

function Wm(t) for each route m. This measures the total

residual workload at time t, in the fluid limit, and can be

expressed as

Wm(t) =

∫ ∞

0

σdζm(σ) =

∫ ∞

0

Fm(t, σ)dσ. (14)

Here the second step follows by integration by parts. We will

assume that the initial workloadWm(0) is finite for allm. The

following Lemma (analogous to Lemma 3.3 in [9]) describes

the evolution of Wm(t).

Lemma 4. Given a solution Fm(t, σ) to (8), the workload

function Wm(t) defined in (14) satisfies

Ẇm =

{

ρm − ϕm(t), Zm > 0,

0 Zm = 0,

and therefore the bound

Wm(t) ≤Wm(0) + ρmt. (15)

In particular, Wm(t) remains finite for all time.

Proof: Focusing on the case Zm > 0, integrating the PDE

with respect to σ and using (7) yields

Ẇ (t) =

∫ ∞

0

∂Fm(t, σ)

∂t
dσ

=
ϕm(t)

Zm(t)

[

Fm(t, σ)
]∞

0
+ λm

∫ ∞

0

Gm(σ)dσ

= −ϕm(t) + ρm.

A. Lyapunov function

Choose a sufficiently small δ satisfying

Condition 1. For all l, ρ̃m = (1 + δ)ρm satisfies
∑

mRlmρ̃m < cl, and (1 − δ)(1 + δ)α+1 > 1 and δ > 0.

Recall that α > 0 is the fairness parameter used by the

congestion control. The second inequality always holds for
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0 < δ < α/(2 + α); note δ → 0 as α → 0. Introduce the

Lyapunov function

L(t) =
∑

m

Lm(t)

=
∑

m

1

ρ̃αm

∫ ∞

0

[Fm(t, σ)]α+1wm(σ)dσ. (16)

Here wm(σ) is a “spatial weight” to be selected shortly; we

impose that it is non-negative and bounded in σ ≥ 0, and
normalized to wm(0) = 1.
As a first remark, note that since Fm(t, σ) is by definition

monotonically non-increasing in σ, we have

Fm(t, σ)α+1 ≤ Zm(t)αFm(t, σ),

therefore

Lm(t) ≤
‖wm‖∞Z

α
m(t)

ρ̃αm

∫ ∞

0

Fm(t, σ)dσ

= κmZ
α
mWm(t), (17)

with κm := ‖wm‖∞ρ̃
−α
m . So Lm is finite for all time using

Lemma 4, and the Lyapunov function is well-defined. We now

compute the time derivative of

[ρ̃m]αLm =

∫ ∞

0

[Fm(t, σ)]α+1wm(σ)dσ

along the trajectory, for any m : Zm > 0. We have:

ρ̃αmL̇m =

∫ ∞

0

(α+ 1)[Fm(t, σ)]α
∂Fm(t, σ)

∂t
wm(σ)dσ

=
ϕm(t)

Zm(t)

∫ ∞

0

∂Fα+1
m (t, σ)

∂σ
wm(σ)dσ

+

∫ ∞

0

(α+ 1)[Fm(t, σ)]αλmGm(σ)wm(σ)dσ. (18)

Integrating by parts in the first term, we have

∫ ∞

0

∂Fα+1
m (t, σ)

∂σ
wm(σ)dσ

= Fα+1
m (t, σ)wm(σ)

∣

∣

∣

∞

σ=0
−

∫ ∞

0

Fm(t, σ)α+1w′
m(σ)dσ

= −Zm(t)α+1 −

∫ ∞

0

Fm(t, σ)α+1w′
m(σ)dσ

Substituting in (18) we obtain

ρ̃αmL̇m =− ϕm(t)Zm(t)α

+

∫ ∞

0

Fm(t, σ)α
{

−
ϕm(t)

Zm(t)
Fm(t, σ)w′

m(σ)

+ (α+ 1)λmGm(σ)wm(σ)
}

dσ. (19)

B. Choice of weight wm(σ)

We now specify that wm(σ) satisfies the following differ-

ential equation in σ,

w′
m(σ) = KµmGm(σ)wm(σ)

α+1
α

for some K ∈ (0, α) to be specified later. This equation can

be readily solved (for wm(0) = 1) to yield

wm(σ) =

(

1−
Kµm

α

∫ σ

0

Gm(u)du

)−α

. (20)

Note that since µm

∫∞

0
Gm(u)du = 1, for K < α the term

in brackets is strictly positive, bounded away from zero, so

wm(σ) is well-defined, non-negative and bounded. With this

choice, (19) becomes

ρ̃αmL̇m =− ϕm(t)Zm(t)α+
∫ ∞

0

Fm(t, σ)α
{

−
ϕm(t)

Zm(t)
Fm(t, σ)wm(σ)

1
αK

+ (α+ 1)ρm

}

µmGm(σ)wm(σ)dσ.

(21)

C. Bounding the Lyapunov derivative.

We wish to upper bound the terms involving Fm(t, σ) in

the above integral. For this we calculate the maximum of the

function

φ(F ) := Fα{(α+ 1)ρm − bF},

over F ≥ 0. Here we have denoted

b =
ϕm(t)

Zm(t)
wm(σ)

1
αK.

By differentiation we have

φ′(F ) = Fα−1{α(α+ 1)ρm − (α + 1)bF},

which has a root

F ∗ =
αρm
b

=
αρmZm

Kϕmw
1/α
m

,

and yields a maximum

φ(F ∗) =

(

αρmZm

Kϕmw
1/α
m

)α

ρm =
ααρα+1

m Zα
m

Kαϕα
mwm

.

Returning to (21), we obtain the bound

ρ̃αmL̇m ≤− ϕm(t)Zm(t)α+
∫ ∞

0

ααρα+1
m Zm(t)α

Kαϕm(t)αwm(σ)
µmGm(σ)wm(σ)dσ

=− ϕm(t)Zm(t)α

+
ααρα+1

m Zm(t)α

Kαϕm(t)α

∫ ∞

0

µmGm(σ)dσ

=− ϕm(t)Zm(t)α +
ααρα+1

m Zm(t)α

Kαϕm(t)α
. (22)

Since K is a free parameter, restricted only by K < α, we
can now choose it to satisfy

( α

K

)α

= (1− δ)(1 + δ)α+1 > 1. (23)

Then (22) becomes

L̇m ≤ Zm(t)α
{

−
ϕm(t)

ρ̃αm
+
ρ̃m(1− δ)

ϕm(t)α

}

. (24)
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Lemma 5. For any positive numbers ρ̃, ϕ,

−
ϕ

ρ̃α
+

ρ̃

ϕα
≤ (α+ 1)

(ρ̃− ϕ)

ϕα
. (25)

Proof: Bounding the convex function h(x) = xα+1 by its

tangent around the point x = ρ̃ gives

ϕα+1 ≥ ρ̃α+1 + (α+ 1)ρ̃α(ϕ− ρ̃).

Dividing by ρ̃αϕα and reordering terms yields (25).

We now state the main result of this section, that shows

the Lyapunov function has negative drift along trajectories,

provided the natural stability condition (2) holds.

Theorem 6. Suppose that the capacity constraints (2) are

satisfied, and consider the Lyapunov function L defined in (16)

with wm(σ) in (20), K in (23) and δ satisfying Condition 1.

Then L satisfies

L̇ ≤ −δ
∑

m:Zm>0

ρ̃m

(

Zm

ϕm

)α

. (26)

Proof: We use the bound (25) in (24), and obtain

L̇m ≤ (α+ 1)

(

Zm

ϕm

)α

(ρ̃m − ϕm)− δρ̃m

(

Zm

ϕm

)α

for any m where Zm > 0. Note also that L̇m = 0 when

Zm = 0, (refer to Remark in Section II-E). Superimposing all

terms we get

L̇ =
∑

m

L̇m ≤(α+ 1)
∑

m:Zm>0

(

Zm

ϕm

)α

(ρ̃m − ϕm)

− δ
∑

m:Zm>0

ρ̃m

(

Zm

ϕm

)α

.

Noting that
(

Zm

ϕm

)α

= U ′
m

(

ϕm

Zm

)

, we are in a position to

apply (5), with ψm = ρ̃m that satisfy the capacity constraints.

This is the only step that relies on the underlying congestion

control resource allocation.

IV. STABILITY RESULTS

A. Asymptotic convergence

We show first an asymptotic stability result under very

general conditions: requiring only that loads strictly satisfy

the capacity constraints, the solutions to the fluid model (8)

asymptotically converge to zero.

Theorem 7. Under the capacity constraints (2), the Lyapunov

function L defined in (16) with wm(σ) in (20), K in (23) and

δ satisfying Condition 1, satisfies

lim
t→∞

L(t) = 0.

Proof: First note that a bound of the form

Lm ≤ (A+Bt)Zα
m (27)

follows from from (17) and (15), by defining A =
maxm κmWm(0), B = maxm κmρm. This leads to

ρ̃m

(

Zm

ϕm

)α

≥
Lmρ0

Cα(A+Bt)
,

where ρ0 = minm ρm and C = maxl cl. Take η := ρ0C
−α,

and apply Theorem 6 to obtain

L̇ ≤ −
δη

(A+Bt)

∑

m

Lm = −
δη

(A+Bt)
L.

While L(t) > 0, we can integrate to obtain

logL(t) ≤ logL(0)−

∫ t

0

δη

(A+Bu)
du.

As t→ ∞ the integral diverges, so L(t) → 0.

Remark 3. Since the definition of Lm(t) involves a weighted

norm of the state Fm(t, ·) in the function space L1+α, it

follows that Fm(t, ·) converges to zero in this space. Now,

given that the functions Fm(t, σ) are monotonically non-

increasing in σ, there must also be pointwise convergence to

zero for every σ ∈ (0,∞).

B. Finite time convergence

In order to relate fluid stability with the stochastic models,

convergence of the fluid models to zero in finite time is often

required [8], [13]. We show in this section that such a result

follows from a very slight strengthening of the hypothesis:

requiring that the file-size distributions νm have a finite p
moment for some p > 1. Specifically,

Bm :=

∫ ∞

0

σpdνm =

∫ ∞

0

σp[−dGm(σ)] <∞. (28)

Notice that this still allows for heavy-tailed distributions: for

instance, the Pareto distribution with complementary cumula-

tive distribution function

Gm(σ) = min{1,
1

σγ
}

has finite mean if and only if γ > 1. In this case it will also

have a finite p-moment for p close enough to 1.
We will impose an analogous restriction to the initial

condition F
(0)
m (σ) := Fm(0, σ). This is the complementary

CDF of a finite measure ζm(0) (note that Fm(0, 0) is assumed

finite, not necessarily unity), and we can write the moment

condition

Am :=

∫ ∞

0

σpdζm(0) =

∫ ∞

0

σp[−dF (0)
m (σ)] <∞. (29)

Proposition 8. Suppose Gm and F
(0)
m satisfy respectively (28)

and (29), then F
(t)
m (σ) := Fm(t, σ) satisfies the finite moment

condition
∫ ∞

0

σp[−dF (t)
m (σ)] ≤ Am +Bmλmt. (30)

Proof: For brevity we drop the subindexm from all variables.

Since ∂F
∂σ ≤ 0, the PDE (13) gives

∂F (t, σ)

∂t
≤ λG(σ),

which can be integrated in time to give

F (t, σ) ≤ F (0, σ) + λG(σ)t.

Now invoke integration by parts to write
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∫ a

0

σp[− dF (t)(σ)]

=− apF (t)(a) +

∫ a

0

p σp−1F (t)(σ)dσ

≤

∫ a

0

p σp−1[F (0)(σ) + λG(σ)t]dσ

=

∫ a

0

σp[−dF (0)(σ)] + apF (0)(a) +

λt
[

∫ a

0

σp[−dG(σ)] + apG(a)
]

.

Taking limit with a → ∞, the “tail” terms vanish due to

the finite moment assumption on F (0) and G, and we obtain

(30).

As a corollary we derive the following bound on the residual

workload function. This is a generalization of the inequality

in Lemma 4. Indeed, if we use p = 1 in (31) below, we obtain

(15).

Proposition 9. Under the conditions of Proposition 8,

Wm(t) ≤ (Am +Bmλmt)
1
pZm(t)1−

1
p . (31)

Proof: Apply Hölder’s inequality to the integral

Wm(t) =

∫ ∞

0

σ[−dF (t)
m (σ)]

≤

[
∫ ∞

0

σp[−dF (t)
m (σ)]

]
1
p
[
∫ ∞

0

[−dF (t)
m (σ)]

]1− 1
p

.

The desired bound then follows from (30).

Using the above bounds, we are now ready to prove our

result about finite time convergence.

Theorem 10. Suppose Gm and F
(0)
m satisfy respectively (28)

and (29). Then, under the capacity constraints (2), F
(t)
m

converges to zero in finite time.

Proof: It suffices to show that L(t) chosen as in Theorem 6

reaches zero in finite time. Applying (31) to (17) yields

Lm ≤ (κpmAm + κpmBmλmt)
1
pZ

α+1− 1
p

m ,

which we simplify to

Lm ≤ (A+Bt)1−βZα+β
m , (32)

by setting A = maxm κpmAm, B = maxm κpmBmλm, and

β = 1− 1/p. Note that 0 < β < 1.

Note the similarity between (32) and (27). Proceeding as in

Theorem 7, when Zm 6= 0, whence ϕm 6= 0, we write

ρ̃m

(

Zm

ϕm

)α

≥
ρ0
Cα

L
α

α+β

m

(A+Bt)
α(1−β)
α+β

.

Therefore

∑

m:Zm>0

ρ̃m

(

Zm

ϕm

)α

≥
ρ0C

−α

(A+Bt)
α(1−β)
α+β

∑

m:Zm>0

(Lm)
α

α+β

≥
ρ0C

−α

(A+Bt)
α(1−β)
α+β

max
m

(Lm)
α

α+β

≥
ρ0C

−α
(

1
M

∑

m Lm

)
α

α+β

(A+Bt)
α(1−β)
α+β

=
η

(A+Bt)
α(1−β)
α+β

L
α

α+β .

Here M is the number of routes, and η is appropriately

defined. Returning now to (26), we obtain

L̇ ≤ −
δη

(A+Bt)
α(1−β)
α+β

L
α

α+β .

When L > 0, this yields

d

dt
L

β

α+β =
β

α+ β
L− α

α+β L̇

≤ −
β

α+ β

δη

(A+Bt)
α(1−β)
α+β

= −ǫ
d

dt
(A+Bt)

β(α+1)
α+β ,

where we define ǫ = δη
B(1+α) > 0 and use the identity

1−
α(1 − β)

α+ β
=
β(α+ 1)

α+ β
.

Integrating we have

L(t)
β

α+β ≤ L(0)
β

α+β − ǫ(A+Bt)
β(α+1)
α+β + ǫA

β(α+1)
α+β . (33)

Since the second term on the right of (33) grows without

bound in t, L(t) must reach zero in finite time.

Note that both here and in Theorem 7, the speed of

convergence is controlled by δ, and this parameter goes to

zero as α→ 0. This is consistent with the fact that for α = 0,
the network need not be stable [3, Example 1].

Convergence time.

We will additionally show that the convergence time grows

linearly as a function of the “size” of the initial condition

Fm(0, σ), expressed in terms of Zm(0) = Fm(0, 0) and the

p-moment Am defined in (29). We have the following result.

Proposition 11. Under the assumptions of Theorem 10, there

exists an constant κ with the following property:

for every r > 0, if the initial condition satisfies

Fm(0, 0) ≤ r, Am ≤ r for each m, (34)

then Fm(t, σ) = 0 for every t ≥ κr and every σ,m.

Proof: Since by definition L(t) = 0 implies Fm(t, σ) ≡ 0
for all σ,m, we focus on the time t0 when L(t) reaches zero.
From (33), this time satisfies

(A+Bt0)
β(α+1)
α+β = A

β(α+1)
α+β +

1

ǫ
L(0)

β

α+β . (35)
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It is sufficient to show that when (34) holds, the above t0 can

be bounded by κr for a fixed constant κ. We bound the terms

on the right-hand side of (35).

The first term is bounded directly since A =
maxm κpmAm ≤ rmaxm κpm. So

A
β(α+1)
α+β ≤ κ̄r

β(α+1)
α+β

for an appropriate κ̄. For the second term, apply (32) at t = 0
to get

Lm(0) ≤ A(1−β)Zm(0)α+β

≤ max
m

κmr
(1−β)rα+β

= rα+1 max
m

κm.

Therefore

L(0)
β

α+β ≤ κ̂r
β(α+1)
α+β

for an appropriate κ̂. Combining now both terms on the right

of (35) we write

(Bt0)
β(α+1)
α+β ≤ (κ̄+ κ̂/ǫ)r

β(α+1)
α+β ,

from which the bound t0 ≤ κr follows. The resulting κ
depends on a number of fixed constants, including the p-
moment of the arriving file-size distributions, but not on the

initial condition.

V. STOCHASTIC STABILITY

As explained in Section II, the PDE model under considera-

tion is mainly motivated by taking a fluid limit on a stochastic

queueing model. The question we now pose is whether, having

established the stability of the fluid model, can we infer the

corresponding result for the original stochastic model.

A first issue is what is meant by stochastic stability. In the

exponential file size case, the stochastic process is a Markov

chain where the number of connections z = (zm) per class

is the state; in this case stability is usually defined to be

positive recurrence of the Markov chain (see [2]). The natural

generalization of the Markov model to general arrival times

and file sizes (G/G) that form a renewal process is the one

used by Dai [6]. There, a Markov process is defined where

the state keeps track of residual arrival times and service times

of currently active jobs, in addition to queue sizes. Stability

is defined as the positive Harris recurrence of such Markov

process. Dai [6] also obtains a fluid limit model, and defines

a notion of stability for fluid models in terms of convergence

to zero in finite time, similar to the one obtained in Theorem

10.

Does fluid stability imply stochastic stability? Dai [6]

establishes this for service disciplines where the number of

residual times in the state remains bounded. This does not

cover processor sharing disciplines, where all jobs present in

the system receive service, as is the case for our problem.

Although [6] claims that extensions to this case “should be

evident”, we share the view of Gromoll and Williams [8], [9]

that such extensions are not straightforward.

The recent PhD thesis of Nam Lee [13] has addressed

precisely this problem: using the fluid models of [8], [9]

mentioned in Section II, conditions are given under which

fluid stability implies stochastic stability (Harris recurrence).

We now highlight some aspects of this work, without getting

into technical details which are far beyond our scope.

A number of technical assumptions are made in [13] on the

processes of inter-arrival times and file-sizes. We focus here

on a “light-tails” condition (Assumption 2.2.1 (iii) in [13])

that is imposed on the file size distribution. If X is a random

file, the condition can be stated as

lim
r→∞

sup
a≥0

E[(X − a)1{X−a>r}|X > a] = 0. (36)

This condition is not too restrictive: in particular, phase-

type distributions, which are known to be dense in the space

of distributions [2], satisfy (36). Still, it is more restrictive

than what we imposed in the previous section; in particular

Pareto distributions do not satisfy it. Under the condition (36),

[13] proves that the stochastic model is stable provided fluid

stability holds in the following sense:

Definition 1 (Def 2.6.3, [13]). The fluid model is stable if for

each r, there exists tr such that any fluid model solutions with

initial condition F = (F
(0)
m ) in

Br := {F : Fm(0, 0) ≤ r, Wm(0) ≤ r ∀m} (37)

satisfies Fm(t, σ) ≡ 0 for t ≥ tr.

Note the strong similarity of this statement and the result

we obtained in Proposition 11; here as well we are requiring

convergence in a finite time that depends on the size of the

initial condition. The only slight difference is that the set

described by (34) (let us call it Bp
r ) involves the p-moment,

p > 1, whereas Br is in terms of the 1-moment. It is not

difficult to see that Bp
r ⊂ Br, so Proposition 11 falls short of

establishing fluid stability in the sense of Definition 1.

We are not certain as to whether this issue is significant,

or if instead the theory in [13] can be extended to work with

the initial set of (34). Nevertheless, we will show that under

the light-tailed condition (36), the requirements of Definition

1 can indeed be satisfied, leading to a complete answer in this

case.

For simplicity, we will replace (36) with

sup
a≥0

E[(X − a)|X > a] = Θ <∞. (38)

It is not difficult to see that (36) implies (38). Therefore, we

can use this fact when invoking the theory of [13]. We can

also express (38) in terms of the complementary cumulative

distribution function (CCDF), as follows.

Condition 2. A finite measure ζ on R+ has light tails if

there exists Θ < ∞ such that the complementary cumulative

distribution F (σ) = ζ((σ,∞)) satisfies
∫ ∞

a

F (σ)dσ ≤ ΘF (a) ∀a ≥ 0. (39)

We will apply Condition 2 to the file-size distribution νm
(with CCDF Gm(σ)). To see the equivalence with (38), note

that the CCDF of the variable X − a, conditioned on X > a,
is Gm(a+ σ)/Gm(a). We also impose the bound (39) to the
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initial condition ζm(0) (with CCDF F
(0)
m ); in this case the

measure is not normalized, but (39) is still meaningful.

The key property of Condition 2 is that it propagates

through time when one follows the PDE (8).

Proposition 12. Consider a solution of (8) in a time interval

(t0, t1) where Zm(t) > 0. Assume F (t0) and Gm satisfy

Condition 2 with a common Θ. Then F (t1) satisfies Condition

2 with the same Θ.

Proof: If Zm(t1) = 0, then F (t1) ≡ 0 and the proposition

holds. It remains to consider the case Zm(t1) > 0. If

Zm(t0) > 0, we can invoke the integral form in Proposition

2:

F (t1)
m (σ) =F (t0)

m

(

σ +

∫ t1

t0

xm(τ) dτ

)

+ λm

∫ t1

t0

Gm

(

σ +

∫ t1

T

xm(τ) dτ

)

dT.

Integrating over σ ∈ [a,∞) gives

∫ ∞

a

F (t1)
m (σ)dσ =

∫ ∞

a

F (t0)
m

(

σ +

∫ t1

t0

xm(τ) dτ

)

dσ

+ λm

∫ t1

t0

∫ ∞

a

Gm

(

σ +

∫ t1

T

xm(τ) dτ

)

dσ dT

≤ΘF (t0)
m

(

a+

∫ t1

t0

xm(τ) dτ

)

+Θλm

∫ t1

t0

Gm

(

a+

∫ t1

T

xm(τ) dτ

)

dT

=ΘF (t1)
m (a).

The change in order of integration is admissible since func-

tions are non-negative. If instead Zm(t0) = 0, then we

start with the form in Corollary 3, and perform the same

manipulations with the first term omitted.

Note also that (39) is trivially propagated during an interval

of time where Fm(t, σ) remains at zero. Therefore, if we

assume the initial condition and the arriving file-sizes satisfy

Condition 2, the solution F
(t)
m of the PDE will satisfy it for

all time.

An importance consequence is the following bound on the

workload, which follows from applying (39) to F
(t)
m at a = 0:

Wm(t) ≤ ΘZm(t). (40)

This bound is a strengthening of (31), which holds under

these narrower (light-tailed) conditions. Indeed, it corresponds

to setting p = ∞ in (31), or equivalently β = 1 in the proof

of Theorem 10. Referring back to this proof, we have:

• (32) can be now replaced by

Lm ≤ AZα+1
m ,

by setting A = maxm κmΘ.

• Analogous steps lead to the condition

L̇ ≤ −
δη

A
α

α+1
L

α
α+1 .

• For L > 0, this yields

d

dt
L

1
α+1 ≤ −

δη

(α+ 1)A
α

α+1
.

The right hand-side is now a constant, which we denote

−ǫ, and leads to

L(t)
1

α+1 ≤ L(0)
1

α+1 − ǫt,

and thus again finite-time convergence.

We can now state the final result:

Theorem 13. Assume that the initial conditions and file size-

distributions satisfy Condition 2. Then, under the capacity

constraints (2), the fluid model is stable in the sense of

Definition 1.

Proof: We start with an initial condition in Br as in (37).

We bound the convergence time from the previous derivation

by

t ≤
1

ǫ
L(0)

1
α+1 = (

∑

m

Lm(0))
1

α+1 ≤ A
1

α+1M
1

α+1 r.

Here again M is the number of routes. If we denote by tr
the right-hand experssion, we see that L(t) = 0 (and thus

F (t, σ) ≡ 0 for t ≥ tr.
Putting all pieces together we are able to state a result on

the stochastic system, invoking the theory in [13].

Corollary 14. Consider a stochastic model that satisfies the

technical Assumptions 2.2.1 and 2.2.2 from [13], in particular

the light-tailed condition (36). Suppose that the loads ρm
satisfy

∑

l

Rlmρm < cl for each l,

and jobs are served with an α-fair bandwidth allocation,

0 < α < ∞. Then the stochastic system is stable (Harris

recurrent).

VI. PACKET-LEVEL VALIDATION

Over the course of this theoretical paper we have worked

with highly idealized models of network protocols. In this

section we offer evidence that the results remain relevant to

real networks, by matching model predictions with packet-

level simulations using the network simulator ns-2 [19].

A. Fluid model validation

Our models have involved two fluid limits:

• A lower-layer fluid model that replaces the packet counts

of the TCP algorithm by a continuous rate satisfying the

α-fair resource allocation of (1).

• A connection-level fluid model that replaces a stochastic

queueing system of jobs served by TCP, by the PDE

(8) where a continuous state F (t, σ) quantifies jobs with
residual work larger than σ.

The former has been the subject of many empirical studies

(see for example [23]), which have shown that models repre-

senting flows as fluids are good approximations for systems in

which each flow has a large bandwidth-delay product (BDP).
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Link 1: 100 Mbps Link 2: 100 MbpsRoute 2

Route 0 Route 1

Fig. 1. Simulated “parking-lot” topology.

In particular, (weighted) α-fairness is a useful model for

TCP Reno with α = 2 and for TCP-Vegas and TCP-FAST

with α = 1 (see [22], [25]), in steady state. One remaining

issue here is the validity of neglecting the congestion control

transient in connection-level studies.

The latter fluid limit is supported by the theory in [11],

[9], which shows convergence to the fluid model when time,

and initial conditions, are re-scaled as described in Section II.

This is sufficient to answer the question of stability, which

is defined in terms of boundedness of the number of flows

as time goes to infinity. However, a natural question is its

predictive power beyond this asymptotic.

Another issue that may compromise applicability is is that

for large numbers of flows and fixed capacity, as stipulated

in the second fluid limit, the BDP of each flow will be low,

calling into question the accuracy of the first. The following

simulation shows that applying both fluid models simulta-

neously can retain predictive power on the packet network

dynamics.

We use the network of two links and three routes of

Figure 1. Links have 100Mbps capacity. Flows use TCP Reno

(which approximates α-fairness with α = 2), and each link

has a round trip delay of 20ms. Over each route we generate

a Poisson process of TCP connections, and transmitted files

with sizes independently drawn form a Pareto distribution with

mean 5Mbit and shape parameter 1.5. The mean load on

each path was 45Mbps, giving a load on each link of 90%.

Since the fluid model proposed here describes the return from

excursions in the number of flows, each path initially had 100

flows.

Figure 2 plots the number of ongoing flows for the ns2

simulation, in comparison with a numerical integration of the

PDE. As expected, the number of flows in the packet-level

simulation varied randomly around the value predicted by

the fluid model, in particular the model captures the main

characteristics such as the time to return to the steady state.

B. Stability under different TCP resource allocation models

Figure 2 demonstrates the stability of the network under

less than 100% load, for the fairness model of TCP-Reno

that corresponds to α = 2. We now present simulations that

illustrate the sort of instability that occurs when the load limit

is exceeded, for two different fairness models.

Figure 3 compares the situations of 90% and 110% load,

for zero initial conditions, still for the α = 2 case. We see the

instability of the latter case, in which the number of pending

jobs starts to accumulate in the network.

In Figure 4 we replace the underlying transport protocol

with TCP-FAST, which can be modelled by a proportionally

fair allocation (α = 1). We use the same loads as in the
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Fig. 2. Number of ongoing connections on each path of a two-hop network,
in ns2 simulation (solid lines) and according to the fluid model (dotted lines).
In the fluid model, routes 0 and 1 have identical numbers of flows. TCP Reno
(α = 2), with 90% load of Pareto-1.5 flows.
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with Pareto-1.5 flow sizes.
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Fig. 4. Simulation example of a parking lot network with TCP/Fast (α = 1),
with Pareto-1.5 flow sizes.

previous example, and obtain similar results in regard to

stability.

C. Example of instability when α = 0

As mentioned in [3], an α-fair network with α = 0 (i.e.,

the maximum throughput resource allocation) can be unstable

even if the average load on each link is less than the capacity.

In a symmetric parking-lot topology such as Figure 1, 0-

fairness must give strict priority to the single-hop flows when

they are present in both links. When only one link has single-

hop flows, the 0-fair solution is indeterminate, but one possible

choice is to still give priority to the single-hop flow present.

In that case the set of stable arrival rates is strictly smaller

than the capacity region of the network. This is illustrated in

Figure 5, which shows the number of flows for this topology

under 80% load, but with scheduling that gives priority to

single-hop packets. In this case, the number of single-hop

flows remains small, but the number of two-hop flows grows

without bound.
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Fig. 5. Instability with each link underloaded (load 80%), with α = 0. The
number of flows on each path is plotted against time.

VII. CONCLUSION

We have considered the conjecture that the natural condition

(all mean link loads strictly below capacity) suffices for the

stability of a network with randomly arriving files of gen-

eral size distributions, when jobs are served with α-fairness.
Building on recent fluid limit studies [9], we formulated a

partial differential equation model for the problem, where the

state Fm(t, σ) represents the residual workload distributions

per route. We constructed as Lyapunov function a suitably

weighted spatial α + 1-norm of Fm, that is shown to have

negative drift under the natural stability condition. With these

tools, we provided three main stability results:

• For general file-size distributions, only assumed to have

finite mean, we prove the asymptotic convergence to zero

of the fluid model.

• For file-size distributions of finite p-moment, p > 1, we
prove convergence to zero of the fluid model in finite

time, and bound this time as a function of the initial state.

Note that the above restriction is very mild, in particular

it includes “heavy-tailed” distributions such as Pareto,

commonly invoked for Internet traffic models.

• For file-size distributions satisfying a “light-tailed” con-

dition introduced in [13], we are able to sharpen our

finite time convergence bound. In this way, we can

directly invoke the theory in [13] to claim convergence

of the associated stochastic model for this problem. The

light-tailed condition is somewhat restrictive, but it still

includes the class of phase-type distributions, which can

approximate any other distribution.

From the above results, we regard the conjecture as funda-

mentally answered in an affirmative way. In terms of fluid

models, the answer is always affirmative, and with a very

mild restriction stability can be strengthened to finite time

convergence. For stochastic models, the conjecture now has an

affirmative answer in all cases where there is a proof mapping

fluid stability to stochastic stability; this includes phase-type

distributions. The only potential room for improvement in

this latter case would be to map fluid to stochastic stability

for a larger class. In this regard, a candidate class would be
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distributions with finite p > 1 finite moment.
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