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ABSTRACT

Many modern schedulers can dynamically adjust their ser-
vice capacity to match the incoming workload. At the same
time, however, variability in service capacity often incurs
operational and infrastructure costs. In this paper, we pro-
pose distributed algorithms that minimize service capacity
variability when scheduling jobs with deadlines. Specifically,
we show that Eract Scheduling minimizes service capacity
variance subject to strict demand and deadline requirements
under stationary Poisson arrivals. We also characterize the
optimal distributed policies for more general settings with
soft demand requirements, soft deadline requirements, or
both. Additionally, we show how close the performance of
the optimal distributed policy is to that of the optimal cen-
tralized policy by deriving a competitive-ratio-like bound.
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1. INTRODUCTION

Traditionally, the scheduling literature has assumed a stat—
ic or fixed service capacity. However, it is increasingly com-
mon for modern applications to have the ability to dynam-
ically adjust their service capacity in order to match the
current demand. For example, power distribution networks
match the energy supply demand as it changes over time.
When using cloud computing services, one can modify the
total computing capacity by changing the number of com-
puting instances and their speeds.

The ability to adapt service capacity dynamically gives
rise to challenging new design questions. In particular, how
to reduce the variability of service capacity is of great im-
portance in such applications since peaks and fluctuations
often come with significant costs [7,24, 31].

For example, the emerging load from electric vehicle charg-
ing stations leads to challenges in power distribution net-
works. Charging stations require stability in power con-
sumption because fluctuations and large peaks in power use
may strain the grid infrastructure and result in a high peak
charge for the station operators. The stations also prefer
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predictable power consumption because purchasing power
in real time is typically more expensive than purchasing in
advance. Cloud content providers also prefer stable and pre-
dictable service capacity because on-demand contracts for
compute instances (e.g., Amazon EC2 and Microsoft Azure)
are typically more expensive than long-term contracts. Ad-
ditionally, significant fluctuations in service capacity induce
unnecessary power consumption and infrastructure strain
for computing equipment.

Thus, in situations where service capacity can be dynam-
ically adjusted, an important design goal is to reduce the
costs associated with variability in the service capacity while
maintaining a high quality of service. In this work, we study
this problem by minimizing the variance of the service ca-
pacity in systems where jobs arrive with demand and dead-
line requests. Our focus on variance is motivated by power
distribution networks, where the size of jobs and (active)
service capacity are small compared to the total energy re-
sources available and where contracts often explicitly depend
on service capacity variability, e.g., if a charging station par-
ticipates in the regulation market, then costs/payments rely
explicitly on the variance of the total capacity [3,30].

Because of the scale of the service systems considered,
the goal of this work is to design distributed scheduling algo-
rithms that minimize the variance of service capacity subject
to service quality constraints, e.g., meeting job deadlines and
satisfying job demands. Our focus is on distributed schedul-
ing algorithms that use only local information about each
job to decide the service rate, since implementing central-
ized algorithms is likely to be prohibitively slow and costly
in large-scale service systems. Power distribution networks
and cloud computing are unlikely to be able to access global
information about all jobs and servers in the system in real
time when deciding the service rate of individual jobs.

Related work. Although the literature on deadline schedul-
ing is large and varied, optimal algorithms are only known
for certain niche cases. Examples of classic scheduling al-
gorithms include Earliest Deadline First [17,25] and Least
Laxity First [17], among others. Beyond these classic al-
gorithms, more modern algorithms simultaneously perform
admission control and service rate control in order to exploit
the flexibility arising from soft demand or deadline require-
ments, e.g., [8,23,29].

The trade-offs between service quality and costs associ-
ated with variability have become a focus only recently,
but already many exciting results have appeared, contrast-
ing the performance of classical algorithms, e.g., [6,11,12].
These issues have also been studied extensively in the areas



of cloud computing and power distribution systems. Algo-
rithms for cloud computing have been proposed to control
the variability of power usage in data centers while achiev-
ing high service quality for deferrable jobs (see [10,14,22,33]
and the references therein). Algorithms for power distribu-
tion systems have been designed to reduce the strain on
the power grid while supplying energy demand to deferrable
loads (see [5,9,13,26,27,32] and the references therein).

Interesting optimality results have been obtained in some
limited settings, such as deterministic worst-case settings [2],
single server systems [4, 28], and/or heavy traffic settings
[16,20]. For example, in heavy traffic settings, the dynamic
behavior of discrete queueing systems can be approximated
by a continuous-state process involving Brownian motion,
for which there exist established tools to optimize [16, 20].
On the other hand, optimizing queueing systems without
continuous-state approximations remains to be a hard prob-
lem. In particular, the problem of designing optimal al-
gorithms that minimize service capacity variability while
achieving high service quality has remained open. Solving
this problem is a challenging task due to the heterogeneity of
jobs (diversity in service requests) and the size of the state
and decision space (numbers of possible configurations on
existing job profiles and the set of feasible control policies).

Contributions of this paper. In this paper, we adapt tools
from optimization and control theory to characterize the
optimal distributed policies in a broad range of settings
without any approximations. Further, we provide a novel,
competitive-ratio-like bound that describes the gap between
the performance of an optimal distributed policy and the
performance of an optimal centralized policy.

2. SYSTEM MODEL

The goal of this paper is to characterize the minimal-
variance online scheduling policies for systems with the abil-
ity to dynamically adjust their service capacity. We use a
continuous time model where ¢t € R denotes a point in time.
Each job, indexed by k € V = {1,2,...}, is characterized by
a random arrival time ay, a random service demand o, and
a random sojourn time 7. The deadline of job k is then de-
fined as ar + 7. In order to formulate the scheduler design
problem, we introduce the arrival profiles, the service pro-
files, the system dynamics, and the design objectives below.

Arrival profiles. We represent the set of arriving jobs as
a marked point process {(aw; ok, 7k)}rey in R x S, where
the arrival times ar € R are the set of points, and the ser-
vice requirements (ox,7x) € S are the set of marks. We
assume that the marked point process is a stationary inde-
pendently marked Poisson Point Process, which is defined
by rate A and a mark density measure f(o,7) on S [1].}
This also implies that {(ax; ok, 7%)}rkev is a Poisson point
process on R x S with an intensity function Af(o,7). In-
tuitively, A [, f(o,7)dodr is the rate at which jobs with
service requirement (o,7) € A C S arrive. We additionally
assume that S is bounded, S C {(o,7) : 7 > o > 0}?, and
the service demand o and sojourn time 7 has finite first and
second moments.

"Here, we use (a;0,7) to denote random variables and
(ak; ok, Tk) to denote one realization of them in job k.
2The condition 7, > o} requires each job k € V to have
a service demand o, that is no more than the maximum
service that can be provided within its sojourn time 7.

Service profiles. The service system works on each job
k € V with a service rate r(t) > 0. To meet the service
demand of job k, its service rate must satisfy

/ ri(t)dt = ok, keV, (1)
ak

where r;(t) is assumed to be an integrable function of ¢.
Moreover, the service rate can take non-zero values only
when the job sojourns in the system, i.e., r;(t) = 0 for any
t ¢ [ak,ar + 7). Without loss of generality, r(t) = 1 is
assumed to be the maximum rate: that is, r4(t) can take
any values in [0,1], and rx < 1 corresponds to throttling
down service speed at the expense of prolonging job com-
pletion times. The above sojourn time and maximum rate
constraints can be jointly written as

0 S ’f’k(t) S l{te[ak,ak+‘rk)}7 (2)

where 14 denotes the indicator function for an event A. The
service capacity is defined by

Py =S ru(t),
kev
which is associated with the instantaneous resource con-
sumption of the service system. Note that we assume that
P(t) has no upper bound. This means that there is always
enough capacity to serve the jobs and, thus, there is no
queueing in the system.

System dynamics. At each time ¢t € R, job k has a re-
maining demand xx(t) = o — f;k ri(h)dh and a remaining
time yx(t) = ax + 7% — t. The set of remaining jobs in the
system can be considered as a point process {(zx (), yx(t)) }x
in R?, where the first coordinate (x) represents the remain-
ing demand and the second coordinate (y) represents the
remaining time. At time ¢, each point (job) has velocity
—rk(t) in the direction of z-coordinate and velocity —1 in
the direction of y-coordinate.

Scheduling algorithms. An online scheduling algorithm
decides the service rates in real-time without using the fu-
ture job arrival information. For scalability, we additionally
restrict our attention to the following form of distributed al-
gorithms which decide the service rate of a job only using
its own information:

ri(t) = u(ze(t),yr(t)) € [0, 1]. 3)

Here, u : Ry x R — R4 is an integrable deterministic
function of the remaining demand zx(¢) and the remain-
ing time yi(¢) of each job k at time t. The policy u also
uniquely determines the vector field in the space of the point
process {(zx(t),yx(t))}x, which in turn defines the velocity
(—u(z,y), —1) of points (jobs) at (z,y).

We study policies of the form (3) assuming a situation
where there is enough capacity available to satisfy the de-
mand (P(t) may be scaled up arbitrarily), and so the focus
is on determining the optimal service rate for the jobs in a
distributed manner.

Under any policy of the form (3), the set of jobs remaining
in the system converges to a stationary distribution. This
stationary distribution is a spatial Poisson point process
with an intensity function A(z,y) satisfying

0
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where x is the remaining demand and y is the remaining
time. Equation (4) is derived from the continuity equation,
which describes the transport of a ‘mass’ [12,34].> Because
the remaining job distribution converges to a stationary dis-
tribution, P(t) also converges to a stationary distribution.
Design objectives. We consider minimizing service capac-
ity variability for the settings with hard service constraints,
soft demand constraints, soft deadline constraints, and soft
demand and deadline constraints. In the case of strict de-
mand constraints, we consider the following optimization

problem:
minimize

Var(P), 5
u:(1)(2)(3)(4) (P) 5)

where Var(P) is a functional of u and (o, 7) that satisfies
(4). The optimization problem (5) has demand constraints
as in (1) and deadline constraints as in (2). The constraint
(3) restricts the optimization variable u to be distributed.

In the case of soft demand constraints, we relax the de-
mand requirements (1) and penalize the amount of unsatis-
fied demands with a unit cost §. In this setting, we consider
balancing the service capacity variance and the expected
cost for unsatisfied demands:

Var(P) + E[6U], (6)

minimize

u:(2)(3)(4)

Wher§ U(t) = Zkel):akj—nc:t xk(t) is the ‘total amount of
remaining demands for jobs departing at time ¢.

In the case of soft deadline constraints, we relax the dead-

line requirements (2) and penalize deadline extensions with

a unit cost €. Let 7% be the actual sojourn time of job k € V:

0< ’l“k(t) < l{ie[ak,ak""?k)}’ (7)

So 7 — 7 is the duration of deadline extension, and let
W(t) = Zke\):a P 71 — T be the total duration of dead-
line extensions for jobs departing at time t. We consider
balancing the service capacity variance and the expected
cost for deadline extensions:

Var(P) + E[eW]. (8)

minimize
w:(1)(3)(4)(7)
In the case of soft demand and deadline constraints, we
relax both the demand requirements (1) and the deadline
requirements (2). The system needs to pay a cost of § for
each unit of unsatisfied demands and a cost of € for each
unit of deadline extensions. In this setting, we consider bal-
ancing the service capacity variance, the expected cost for
unsatisfied demands, and the expected cost for deadline ex-
tensions:
minimize

minimize  Var(P) + E[0U] + E[eW]. )

Generalizing above cases, we consider the case where the
unit costs for unsatisfied demands and deadline extensions
are heterogeneous among jobs. Let d; be the unit cost
for the unsatisfied demand of job k € V, and ex be the

3In our setting, the ‘mass’ is the probability density. When
the system is stationary, the mass (probability density) is
conserved over time, as in (4).

“In this paper, we use the following notation: E[P] and
Var(P) represent the stationary mean and variance of a
stochastic process {P(t)}ier, while E[P(t)] and Var(P(t))
represent the instantaneous mean and variance of P(t) at
time ¢.

unit cost for its deadline extension. The set of jobs is as-
sumed to be a independently marked Poisson point process
{(ak; ok, Tk, Ok, €k) ey, where the unit costs (0, €x) € ]Ri
are the additional marks of jobs. We assume that (0, e€x)
are identically distributed random variables with a joint den-
sity measure f(9)f(¢e) (hence independent from each other as
well) and are also statistically independent from (ax; o, 7%).
To account for the heterogeneous costs, we consider schedul-
ing policies of the form

Tk(t) = ﬂ(l’k(t),yk(t),dk,ek) >0 (10)

and the optimization problem

min Var(P(t)) + E
a:(7)(10) (P())

> dkan(t)| +

keV:
ap+Tp=t

E| > ea@-m)|. (1)
key:
ap+TE=t

Motivating examples. The general model we have defined
is meant to give insight into the design trade-offs that hap-
pen in applications with dynamic capacity, e.g., electric ve-
hicle charging or cloud content providers while exploring
design trade-offs using a simple, general model.

However, to highlight the connection to our motivating
examples, consider first the case of electric vehicle charg-
ing [18]. In this case, each job k € V corresponds to an
electric vehicle with an arrival time aj, an energy demand
ok, and a sojourn time 7. At each time ¢, the charging
station provides vehicle k with a charging rate of rx(¢t) by
drawing P(t) = >, oy, 7x(t) amount of power from the grid.
When doing so, a stable resource usage is highly desirable
because fluctuations and large peaks in P(t) can lead to a
high peak charge or strain the grid. Moreover, a predictable
resource use is also important when purchasing energy from
the day-ahead market, whose price is lower and less volatile
than that of the real-time market. Note that our model as-
sumes P(t) is unbounded and, thus, corresponds to a setting
where there are more charging stations than arriving cars.
It is important to relax this assumption and consider the
case where P(t) is limited in future work.

In the case of cloud content providers, each job k € V
corresponds to a task (requested to the cloud or data cen-
ters) with an arrival time ax, a work requirement ok, and
an allowable waiting time 7. The service system works on
job k with speed 74(t) using P(t) = >, .\, 7x(t) number of
computers (or amount of power). Thus, given a good es-
timate of the future resource use, a cloud content provider
can reserve resources through a long-term contract, whose
price is lower and less volatile than that of a short term con-
tract. This motivates its scheduling algorithm to achieve a
predictable resource use. Note that our model considers the
case where P(t) is unbounded and, thus, the data center
has enough capacity to avoid congestion, i.e., is in low uti-
lization. Such periods are common, since data centers often
operate at utilizations as low as 10% [15], but managing
congestion and queueing is crucial in data center operations
and this is not captured in our model. The importance of
managing congested periods highlights the need for future
work to consider how an upper bound on P(t) impacts the
results presented here.



3. OPTIMAL DISTRIBUTED ALGORITHMS

In this section, we characterize the optimal distributed
scheduling policies in a wide range of settings, starting with
the simplest and moving toward the most complex. To be-
gin, we focus on strict service requirements and show that
Exact Scheduling minimizes the stationary variance of the
service capacity (Section 3.1). Relaxing the demand require-
ments, we show that a variation of Exact Scheduling mini-
mizes the weighted sum of both the stationary variance of
the service capacity and the penalty for unsatisfied demand
(Section 3.2). Relaxing the deadline requirements, we show
that a different variation of Exact Scheduling minimizes the
weighted sum of both the stationary variance of the service
capacity and the penalty for demand extension (Section 3.2).
Finally, we consider the case when both the demand and
deadline requirements are relaxed (Section 3.4) and show
that the optimal policy becomes significantly more complex
in this case. However, note that all the optimal algorithms
we identify are in closed-form, and thus provide clear in-
terpretations and insights regarding the optimal trade-offs
between reducing service capacity variability, satisfying the
demands, and meeting deadlines. Moreover, it is interesting
that the minimum service capacity variance is achieved by
these simple algorithms, all of which are extremely scalable
and easy to implement.

3.1 Strict demand and deadline requirements

We first consider the case of strict service requirements
and show a closed-form formula of the algorithm that mini-
mizes the stationary variance Var(P). To do so, it is worth
noting that peaks in service rate amplifies the uncertainties
in the future arrivals, which in turn produces large variance
in P(t) =3, mx(t) = >, u(ze(t), yx(t)). In order to min-
imize peaks subject to strict service requirements, one can
consider using a flat service rate, which is achieved by the
scheduling policy

E, if y > 0,
u(z,y) =< Y (12)
0, otherwise.

This policy is known as Exact Scheduling and works by fin-
ishing all jobs ezactly at their deadlines using constant ser-
vice rates. It is also highly scalable because it is distributed
and asynchronous, and it does not require much computa-
tion or memory use. Although existing literature has ana-
lyzed its performance in various settings [7,12,19,21], opti-
mality guarantees have been difficult to obtain. In this sec-
tion, we show that Exact Scheduling minimizes the variance
of service capacity under time-homogeneous job arrivals and
strict demand constraints.

Theorem 1. Ezact Scheduling (12) is the optimal solution
of (5) and achieves the optimal value

vy = 2]

Theorem 1 shows the achievable performance improve-
ment by performing distributed service capacity control. If
no control is applied, then r4(t) = 1(a, a)+0,](t), and the
stationary mean and variance of P(¢) is E(P) = Var(P) =
AE[o]. By performing a distributed service capacity control,

the stationary variance can be reduced by

T

AE [M} € [0, AE[o]]

where 7 — o is the slack time (the amount of time left at job
completion if a job is served at its maximum service rate
since it arrives).

3.2 Soft demand requirements

In this section, we relax the strict service requirements
and characterize the optimal algorithm under soft demand
constraints. Specifically, we consider the setting when the
system needs to pay a cost § for each unit of unsatisfied de-
mands. When this unit cost is sufficiently large, we recover
the case of strict service requirements. The optimal algo-
rithm we identify is a generalization of Exact Scheduling:

L i<y,
Y 2

u(z,y) = (13)

N> (8

1)
, if z > — y>0,
Y 2
0, otherwise.

We call (13) Rate-limited Ezact Scheduling. This policy es-
sentially sets §/2 to be the upper bound on service rates.
Under this policy, job k receives its full service demand if
or < 07/2 but otherwise is provided with the partial ser-
vice demand of §7i/2. To the best of our knowledge, this
algorithm has not been proposed in the existing literature.

Theorem 2. Rate-limited Ezact Scheduling (13) is the op-
timal solution of (6) and achieves the optimal value

2
AE 071{%%}*5("* %T) 1{%>%}} - (14
Theorem 2 shows the performance improvement gained
by relaxing the demand requirements. If some demands do
not have to be satisfied, the stationary variance can be re-
duced from Var(P) = E [0® /7] to (14) when the service rate
threshold is set to its optimal value §/2.

3.3 Soft deadline requirements

The previous section shows the optimal algorithm under
soft demand requirements. In this section, we characterize
the optimal distributed algorithm under soft deadline re-
quirements. Specifically, we consider the setting when the
system needs to pay a cost € for each unit of deadline exten-
sions. When the unit cost is sufficiently large, this setting
recovers the case of strict deadline requirements. The re-
sulting optimal algorithm is again a generalization of Exact
Scheduling:

E, ifggﬁandy>0,
Y 15)

u(z,y) =Y
Ve lizsoy, otherwise.

We call (15) Deadline-extended Exact Scheduling. This pol-
icy essentially sets an upper bound /e to service rates.
Under this policy, the deadline of job k is extended when
ok > /€T

Theorem 3. Deadline-extended Ezact Scheduling (15) is
the optimal solution of (8) and achieves the optimal value

2
o
AE 71{%§\/g}+(2\/g0'767') 1{g>\/E} .



Theorem 3 shows the performance improvement by re-
laxing the deadline requirements. If all deadline must be
satisfied, then Var(P) = AE [¢” /7] is the minimum station-
ary variance achievable. If some deadlines do not have to
be satisfied, the stationary variance can be further reduced
at the expense of paying a penalty for deadline extensions.
The service rate threshold /e strikes the optimal balance
between minimizing Var(P) and minimizing E[eW].

3.4 Soft demand and deadline requirements

In this section, we consider relaxing both demand and
deadline requirements simultaneously and characterize the
optimal distributed algorithm. Specifically, we consider the
setting when the system needs to pay a cost § for each unit
of demand extensions and a cost € for each unit of deadline
extensions. This setting recovers all previous settings as
special cases.

Recall from previous sections that, under soft demand re-
quirements, the optimal policy uses a constant service rate
and reject partial demand requests if o/7 > §/2. Mean-
while, under soft deadline requirements, the optimal pol-
icy uses a constant service rate and extends the deadline
if o/7 > /e. These two special cases suggest that, under
soft demand and deadline requirements, a constant service
rate combined with demand rejection and deadline exten-
sion may work well. This is indeed the case, as formalized
below.

Theorem 4. The optimal solution of (9) is

m{g,ﬁ},
)
and o < Ve,

, ify >0,

IA

umy) =92 ify >0,

ST
w8 <8
V

ol B

Velizsoy, otherwise,
(16)
and it achieves the optimal value

2

o oT
AB s cmmfgve}} +O (Vg B I) Hesg2ve)

+ (2\&0’767’) 1{Z>\/€>g}]'

Theorem 4 shows when one should extend the deadline
to satisfy the demand or let the job depart at its dead-
line with unsatisfied demands. The solution (16) generalizes
the optimal algorithms in Section 3.1-3.3, and we call (16)
Generalized Exact Scheduling. Moreover, Generalized Exact
Scheduling is also optimal for a more general problem (11),
when the unit costs for unsatisfied demands and deadline
extensions are allowed to be heterogeneous as in equation

(11).

Corollary 1. The optimal solution of (11) is

; if y >0,

ﬁ(xaya576): ny>07

l\i\%@\&
QI8 w8

Ve 1(z>0), otherwise.

4. PERFORMANCE BOUNDS

The focus of this work is on distributed algorithms, due
to the importance of the algorithms being implementable
in large-scale service systems. Given this focus, it is im-
portant to understand how much performance degradation
is incurred due to restricting ourselves to distributed algo-
rithms. To characterize the performance degradation, we
compare the optimal distributed algorithm with the optimal
centralized algorithms in this section by using both theo-
retical bounds and numerical comparisons. Specifically, we
first provide an upper bound on the performance degrada-
tion. Then, we compare the optimal distributed online algo-
rithms with existing centralized or offline algorithms using
real Electric Vehicle charging instances [18].

Analytic bounds. To derive competitive-ratio-like bounds
on the performance of optimal distributed policies, we first
define centralized (online) policies and then bound their
achievable performance. Then we compare this to perfor-
mance bounds on the optimal distributed policies. The class
of centralized algorithms we consider is of the form

re(t) = wik, t, Ay), Vk €V, (17)

where A; = {(ar, ok, zk(t),yr(t)) : ar < t} is the set that
contains the information of jobs arriving before ¢, and w(k, t.-)
is a deterministic mapping from A: to a service rate ry (t)

Lemma 1. Under any centralized policy of the form (17),
the stationary variance of P(t) is lower-bounded by

A2]E[0_2}2
P)>——"—
Var(P) 2 (X
where X (t) is the total amount of remaining service demand
of jobs arriving before t.

Lemma 1 characterizes the trade-off between achieving
a small variance of X (¢) and achieving a small variance of
P(t). Animmediate consequence of Lemma 1 is a competitive-
ratio-like bound that compares Exact Scheduling.

Corollary 2. Let Var(P*) be the minimum stationary vari-
ance attainable by any centralized algorithm (17) with the
same level of Var(X) as Ezact Scheduling. Then, the sta-
tionary variance P(t) that is attained by Exact Scheduling
(12) satisfies

E[o?/7|E[o?7]

Var(P) < ]2

Var(P™), (18)
where the expectations on the right hand side are taken over
the arrival distribution.

Corollary 2 bounds the ratio of Var(P), achievable by
Exact Scheduling (the optimal distributed algorithm), and
Var(P*), achievable by any centralized algorithms. When
the sojourn time 7 is a deterministic random variable, (18)
reduces to Var(P) < Var(P*), implying that distributed
algorithms can perform equally well compared to the cen-
tralized algorithms having the same Var(X). One such case
is when service demands and sojourn times are determinis-
tic variables, and the service demand of each job equals its
sojourn time (arrival times a are random). In this case, due
to the demand constraints (1) and the deadline constraints
(2), Tk(t) = l{iciag,ap+ry)} 1S trivially optimal both among
centralized policies and among distributed policies.
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Figure 1: Performance under strict demand con-

straints.

Empirical performance. In order to further evaluate the
performance of Exact Scheduling, we test it using data from
an Electric Vehicle Charging Testbed [18] and compare the
performance with existing scheduling algorithms. We em-
ploy a trace-driven simulation on a total of 92 charging in-
stances from the testbed data in [18]. Each instance con-
tains a set of jobs that are requested within a day. We
compute the ratios between the empirical variance achieved
by a few online algorithms and the empirical variance by
the optimal centralized offline algorithm for all instances.
The algorithms tested are Immediate scheduling (u(z,y) =
1(;>0}), Delayed Scheduling (u(z,y) = 1iy<s}), Expiring
Laxity (serving jobs with positive remaining laxity equally
and serving jobs with zero laxity at its maximum rate [12]),
and Exact Scheduling. For each algorithm tested, we plot
the mean ratio in Figure 1. The results highlight significant
performance gains compared to other distributed algorithms
and competitive performance with the optimal centralized
offline algorithm.
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