Controlling the number of active instances in a cloud
environment

Diego Goldsztajn
Universidad ORT Uruguay

goldsztajn@ort.edu.uy

Andres Ferragut
Universidad ORT Uruguay

ferragut@ort.edu.uy

Fernando Paganini
Universidad ORT Uruguay

paganini@ort.edu.uy

Matthieu Jonckheere
Universidad de Buenos Aires

mjonckhe@dm.uba.ar

ABSTRACT

We study a cloud environment in which computing instances
may either be reserved in advance, or dynamically spawned
to serve a fluctuating or unknown load. We first consider a
centralized scheme where a system operator maintains the
job queue and controls the spawning of additional capac-
ity; through queueing models and their fluid and diffusion
counterparts we explore the tradeoff between queueing de-
lay and the service capacity variability. Secondly, we con-
sider the setting of a dispatcher who must immediately send
jobs, with no delay, to decentralized instances, and in addi-
tion may summon extra capacity. Here the capacity scaling
problem couples with one of load balancing. We show how
the popular join-the-idle-queue policy can be combined with
an adequate rule for spawning instances, yielding an equi-
librium with no queuing delay and controlling service ca-
pacity variability; we accommodate as well the case where
spawned instances incur startup delay. Finally, we analyze
the question of deciding, for a given pricing structure for the
cloud service, how many fixed instances should be reserved
in advance. The behavior of these policies is illustrated by
simulations.

1. INTRODUCTION

In modern computer networks, services are usually pro-
vided over the “cloud”, meaning that the resources required
to serve a given computing task (processing time, memory,
etc.) are requested dynamically to a mutualized comput-
ing infrastructure residing in one or multiple data centers.
Companies like Amazon or Google provide the infrastruc-
ture as a service, and application providers such as Netflix
or Dropbox rent the capacity to match supply with demand.

In this context, the question arises on how to scale the
number of allocated resources to match the load. From a
customer perspective, resources are available on-demand,
and thus the system can adapt quickly to changes in the
load profile. However, two main issues have to be addressed.
The first issue is that, typically, the infrastructure providers
offer a discount on reserved instances, meaning that pur-
chasing capacity on a long term contract is preferable over
on-demand requests. Ensuring a predictable number of com-

IFIP WG 7.3 Performance 2017. Nov. 14-16, 2017, New York, NY USA
Copyright is held by author/owner(s).

puting instances is crucial for calculating the necessary long-
term reservations, and thus minimize the costs incurred by
on-demand instances [3,8]. A second issue is that instance
creation may not be immediately achieved, due to the setup
time of the requested virtualized infrastructure over the real
hardware. For a recent discussion on this issue see [6].

In this work, we explore some of the tradeoffs present
in this setting: in Section 2, we model a cloud computing
system as a queue with a fixed number of servers coming
from long term reservations, and a variable number of on-
demand instances. We analyze an algorithm for spawning
new instances on demand in feedback by borrowing ideas
from control theory, extending our previous work [2]. We
provide a fluid limit analysis of the system, identify the key
parameters and show how the system can tradeoff queueing
delay with variability in capacity usage for a given demand.

Our first model deals with a central queue that dispatches
jobs to servers. However, typical load balancers in cloud sys-
tems try to make immediate decisions, routing jobs as they
arrive. Our second model, presented in Section 3 incorpo-
rates the spawning of instances in feedback to typical load
balancers such as random routing, power-of-d choices [5,7] or
Join the Idle Queue [4]. In the load balancing literature, the
number of active instances is typically kept fixed. We show
that adding a simple rule for controlling the number of ac-
tive instances yields excellent performance, by enabling the
system to track automatically the load profile while keeping
utilization high. We also analyze the effect of adding delay
in instance creation, extending some of the results of [6],
and giving simple design rules to achieve near-optimal per-
formance.

Finally, in Section 4 we analyze the problem of purchas-
ing reserved capacity from a customer perspective, and re-
late it to the well known newsvendor problem. We show
that having a proper approximation of the (random) steady
state number of required instances to serve the load allows
the customer to optimally choose the number of long term
reservations, and we apply this to the models derived. Con-
clusions are given in Section 5

2. DYNAMIC SCALING WITH CENTRAL
QUEUEING

Consider a system where computing jobs arrive as a Pois-
son process of rate A. Each job may be allocated a comput-

ing instance (assumed homogeneous), and its service dura-
tion is exponentially distributed with parameter . In what
follows, we will assume that g = 1, which amounts to a
choice of units. In this case, A\ also represents the system
load. Upon arrival, the request may be allocated an instance
immediately or may be queued if all instances are busy.

We consider that the system has two types of instances: a
fixed number N of reserved instances, purchased in advance
through a long-term contract, and a dynamically adjusted
number m(t) > 0 of on-demand instances, called helpers in
the following for brevity. Let n(t) denote the number of
jobs present in the system at time ¢. If the allocation policy
is work conserving, the service rate of the system is then
min{n, N +m}.

As an example, if we choose m = 0, i.e. no extra ca-
pacity is ever purchased, then the system becomes a finite
server queue with N servers. Of course, in that case, if the
number of reserved instances is below the load (A > N) the
system will be unstable. On the other extreme, if we can
spawn a new instance immediately upon arrival when the
reserved ones are full, we have m(t) = (n(t) — N)¥, and
thus the service rate is n(t) at all times. In this case, the
system scales automatically to meet demand, behaving like
an infinite server queue.

Consider now that the customer has acquired the reserved
instances IV, which may be less than A\. To meet demand in
real time, the system provides an auto-scaling feature that
dynamically spawns new instances. A simple procedure is
the one discussed previously: spawning a new instance for
each new job. In this case, the queueing delay for new jobs
is 0, but the system provider loses control on the number of
active helpers in the system, which can turn out to be very
expensive in the long run.

To improve this situation, we propose the following de-
centralized alternative to control the number of on-demand
instances: each job currently in the queue requests a new
helper at a spawning rate B (i.e. a new instance is cre-
ated after a random exp(3) time for each job in the queue).
Moreover, each helper instance only lasts in the system a
time exp(7y), i.e. 7y is the recalling rate. In this setting, the
state of the system (n(t), m(t)) behaves as a continuous time
Markov chain with transition rates depicted in Fig. 1.

(n,m+1)
Iﬁ(n — (N +m)*
(n—1,m min{n, N + m} n,m) A (n+1,m)
[
(n,m—1)

Figure 1: Transition rates for the system.

By performing a large scale limit of the system (A — o0)
and scaling the number of reserved instances accordingly, we
can derive the fluid limit for the Markov chain of Figure 1,
which is given by the second order dynamics:

n=A—min{n, N +m}, (1a)
m=B(n—m—N)" —~ym. (1b)

We now analyze the system in the fluid scale. The equilib-

rium of the above dynamics depends on the load: if A < N,
the equilibrium is simply n* = A\, m™ = 0 and no extra in-
stances are needed. The interesting case is when A > N and
thus we need a positive number of extra instances to cope
with the load. In that case, imposing equilibrium in (1) we
get:

n*=A+2I(A=N), m"=A—N.

B
Note that in equilibrium, the average number of servers (re-
served or not) should match the load, i.e. N +m* = A
Moreover, the number of jobs in the system is larger than
A. Therefore, the queue size in equilibrium is given by:

¢ =n"—(N+m") = %(/\—N) > 0.

Since we are interested in keeping a predictable profile in
the number of helpers, we would like to model the behavior
of the system around the equilibrium to estimate the steady
state variances. To do so, we perform a second order analysis
of the system by linearizing the dynamics and writing the
following stochastic differential equation.

Denoting by dn, dm the incremental quantities, the re-
sulting dynamics are:

d(dn) = [—om]dt + VX[dWy — dWs], (2a)
d(6m) = [B6n — (B + ~)dm]dt + /~v(A — N)[dWs — dwzzl]l;)
2

Here, W; are standard Brownian motions, representing ar-
rivals, departures, helper creation and destruction, i.e. the
randomness in the system around equilibrium. The coeffi-
cients of the noise inputs come from the local representation
of the Markov chain. Taking « = [6n, ém]T, we can rewrite
the above in state-space as dr = Axdt + BdW with:

0 -1
4= (8 —(B+7))
B (VA =V 0 0)
0 0 VYA-N) —/7(A-N)
The steady-state covariance matrix of the above system

is given as the solution of the Lyapunov equation: AQ +
QAT + BBT =0, yielding:

+1-8
Q= A s Y A
A A N |’

_
B+~
Since we are interested only in the number of helpers, from
the above analysis we can recover E[(dm)?] as:

2 v
E[(6m)°] =X ﬂ—i—ny'

As a comparison point, let us go back again to the infinite
server policy with A > N: in that case, the total number
of instances is n = N + m. By a similar approach, one
can estimate E[(0m)?] in this case, yielding E[(6m)?] = A.
Therefore, our control policy enables the system operator to
reduce variability. at the expense of queueing delay. Define
now « := v/, i.e. the recalling rate to spawning rate ra-
tio. For a given load A, the system operator has a tradeoff
between the following two quantities:

q* :a()‘_N)7
Bl(m)*] = A - 1

300 ‘
—— Simulation
—— Fluid limit
200 |-
=
=
g
100 [~
0 !
0 500
300 ‘
g
w0
[}
Q
5 200]
8
n
R
el
=
3
£ 100 - R
<
& —— Simulation
©) —— Fluid limit
0 ! ! I I
0 10 20 30 40 50

Time

Figure 2: Simulation experiment of the spawning
dynamics with A = 1200, N = 1000 and o = 3. Above:
state-space evolution and fluid limit. Below: num-
ber of on-demand servers.

Increasing o means that the recalling rate is high, which
reduces variability but also increases queueing delay. From a
provider perspective, one can use the preceding expressions
to tune the ratio a such as queueing delay is controlled,
and the variability is reduced to acceptable levels. We are
currently exploring the design space of policies to get even
better performance.

As an example, in Figure 2, we plot system evolution for
A = 1200, p = 1, N = 1000 and o« = 3. The first graph
shows the state-space evolution of the system and its fluid
limit approximation. We also plot the number of on-demand
instances in the system as a function of time. In steady
state, the latter achieves a measured variance of o2(m) =
440 (standard deviation ~ 20.98), whereas the predicted
value from the model parameters is 450. As a comparison
point, the variability of the infinite server case would be
A = 1200, i.e. a standard deviation of & 34 instances.

3. DYNAMIC SCALING AND LOAD BAL-
ANCING

In the previous section we analyzed a system where jobs
are queued in the dispatcher until a server becomes available.
However, in cloud systems this type of central queueing is
undesirable, and we now turn our attention to systems that
dispatch their tasks immediately to running instances, and
therefore the problem must incorporate online load balanc-
ing.

In the decentralized load balancing literature [1], systems
are modeled in the “mean field” regime: a cluster of NV
equally behaving instances, with service rate p = 1, is as-
signed jobs through a dispatcher, which receives jobs at rate
N, with A < 1. Thus X\ again represents the “load” of the
system in the sense of an equivalent M/M/1 queue.

The state of the system, for fixed N, would be the vec-
tor Z € N storing the number of jobs queued at each in-
stance. However, a simpler state is available through ag-
gregation of identical systems: if X;(¢) denotes the num-
ber of queues with exactly ¢ jobs, for i« = 0,1,..., then
X(t) = (Xo(t), X1(t),...) is in general a Markov process
in the subset of NV that satisfies Z;’io z; = N.

An equivalent formulation is to choose as state S;(¢), the
number of queues with at least ¢ jobs. Then S(¢) lives in
the set of positive nonincreasing sequences with So = N.
Note that X;(t) = Si(t) — Si+1(¢), ¢ = 0,1,.... Also, for
any policy where routing may only depend on the number
of jobs in the queue (and not on individual identification of
the queue), S(t) (or equivalently X (t)) is a detailed enough
description of the state.

Typically the fluid (mean field) limit is taken as the num-
ber of instances N — oo, and S;(t)/N = s(t), where s(t)
satisfies some kind of infinite dimensional differential equa-
tion. Note that with this scaling so(t) = 1.

As an example, the random load balancer satisfies the
following fluid limit:

So = 1,
$i =)\(57;71 — Si) +4 (S¢+1 — Si) 1> 1.
And its equilibrium is:
s =)

provided the stability condition A < 1 holds.

More interesting choices for the load balancing are power-
of-d choices [5,7] and Join the Idle Queue (JIQ). For in-
stance, JIQ proposes to keep a list of the current empty
queues and only route to them, provided there are any avail-
able. Otherwise it defaults to random routing to keep an
empty dispatcher queue. The mean field dynamics for fixed
servers is as follows:

So = 1,
51 = AMysg>sy + (52 — 51),
i = Msi—1 = 8i)1{s=so} + (8i41 — 8i) 122

Its equilibrium can be readily computed under the stability
condition A < 1 to yield:

so=1, si=X\ s;=0fori>1.

Thus in equilibrium there is a positive number of free in-
stances to use, provided the system is dimensioned correctly.

3.1 Dynamic scaling for JIQ

Our main concern is that the above analysis assumes that
one has a large but fixed number of instances, and thus if the
system is not dimensioned correctly (A < 1) then stability
is lost. We would like to add some kind of “auto-scaling”
feature, to the above, harnessing the power of cloud systems
to scale. The auto-scaling policy should work in feedback
with the number of instances in use and stabilize the system
for any A. Let us explore how to incorporate this into the
load-balancing models.

The simplest way to stabilize the system is to create a new
instance for each arriving job, corresponding to an M /M /oo
system. In this case there is no queueing delay, and the num-
ber of active instances will scale automatically to A. How-
ever, one loses control of the number of instances invoked,
and moreover it may be infeasible to immediately create an
instance for an arriving job due to setup delays.

The main idea here is that the number of servers is not
fixed a priori, so Sop is adjusted in feedback. This can be
formalized in the following way: let A scale as LA with L —
oo and take S(t) = S(t)/L. Then S(t) converges to s(t),
an infinite dimensional dynamics in the cone of decreasing
sequences, but sp may not be 1. In fact, so is the (fluid)
amount of instances invoked to cope with the demand.

As an example, take the following feedback rule: every
arriving job is immediately assigned to an idle server, as in
JIQ, provided there is any. Also, upon arrival, the system
calls for a server creation to replace the one used. To adjust
to demand, idle queues are killed at rate v (i.e. if not used
for an exp(y) time they switch off). This feedback rule yields
the following mean field dynamics:

S0 = A —7(s0 — s1), (3a)
§1 = A{sp>s,} + (52 — 51), (3b)
. 1)
S =)\;(87;71 — Si)l{sl:s()} + (S¢+1 — Si) 1> 2. (3C)
0
Note that in eq. (3c), the extra term - in the random

routing part is due to the fact that so md§ not be 1.
Imposing equilibrium conditions in (3) we arrive at:

* 1 *
80:<1+*)>\, 81:>\,
v

valid for any positive A. It is worth noting that the system
auto-scales: the number of working queues in equilibrium
matches the system load A, and the system automatically
provisions an extra proportion of idle queues equal to A/~.
Therefore, controlling the “turning-off” rate one can drive
the system to automatically work with a small amount of
idle instances.

A second order analysis of the system can be performed,
along the same lines of the previous section. As the scale of
the system gets large, the state space collapses to s; = 0 for
all ¢ > 1. Considering the arrival, departure and instance
recalling perturbations, we get the following stochastic dy-
namics around equilibrium:

s; =0 for i > 1;

d[8s0] = —ds0dt + vds1dt + VAIW: — VAdWo;
d[ds1] = —ds1dt + VAdW1 — VAdWs.

where W; are independent standard Brownian motions ac-
counting for job arrivals, instance recalling and departing
jobs. The linearized system can be written in state space
form taking X = [§s0ds1]” as dX = AXdt + BdW where:

RS |

Solving the Lyapunov equation we can compute the covari-
ance matrix in steady state:
1
0 (1 T ;) x Al
A A

From the above analysis, we can conclude that the to-
tal number of active instances in the system will be ap-
proximately Gaussian with mean and variance A(1 + 1/7).
Moreover, computing the variance of so — s1 from @, we
can deduce that the total number of idle instances will be
approximately Gaussian with mean and variance A/, and
So — s1 is not correlated to s1.

This fact can be better understood using the state space
collapse: when the scale is large, the dynamics reduces to
the following Markov chain in the number of working and
idle servers:

S1 A

v(s0 — s1)

S1

S0 — S1

The invariant distribution of the above Markov dynamics is
product form, with a Poisson distribution for sgp —s1 of mean
/7 and a Poisson distribution for s; with mean A. 1

This analysis also suggests a simple rule for choosing the
recalling rate vy to avoid operating the system with no idle
queues (and thus routing at random increasing queueing de-
lay). Since so — s1 &= N(A/y,A/7v), a rule of thumb for
choosing 7 is to let A/~ be two standard deviations above 0,
which leads to:

A
- —2 i>():>’y:é.
v v 4

This rule can be easily implemented in practice in an ap-
proximate fashion: simply switch off a server that is still
idle after 4 arrivals.

In Figure 3 we plot the time evolution of such a system, for
A = 100 and v chosen as before, and we compare it with the
fluid limit solution. We also plot the number of idle instances
available, showing that the system automatically keeps most
of the time a low but nevertheless positive number of idle
instances to cope with new arrivals. To illustrate the state
space collapse , in Figure 4, we plot the average number of
instances with more than ¢ jobs, i.e. the empirical estimation
of S;, in steady state. Note that Sz ~ 0 and S3 = 0, meaning
that the system seldom uses queues with more than 1 job,
and in this particular run instances with 2 jobs were never
allocated more jobs.

3.2 Considering instance creation delay

The preceding analysis assumes that computing instances
can be spawned with no delay: in that case, JIQ is almost
emulating the infinite server queue. However, we can incor-
porate instance creation delay in the model, by following the
same ideas as in [6].

Consider now that each instance invoked requires a ran-
dom setup time with exponential distribution of parameter
v (i.e. 1/v is the average setup time). Let u(t) be the num-
ber of instances in the process of setting up, and assume
that each new arrival spawns a new instance creation. As

!The above analysis also hints that the results may be insen-
sitive to the job size as well as the recalling rate distributions

— 5
— N
% ‘5 1‘0 1‘5 20
Time
T
10 — So — S1
i i
'llll‘}lul“lll]IJII |I 1”” H‘H’
"“ 5‘ 1‘0 l 15 : 20
Time

Figure 3: Time evolution of the JIQ system with
instance scaling feedback for A = 100, =1 and v =
A/4. Above: total number S, and currently working
S1 instances and their fluid limit. Below, number of
idle instances in the system.

before, idle instances are recalled at rate . Load balancing
is performed by following the JIQ policy. The dynamics of
the system in the fluid scale are now:

U= \—rvu, (4a)
50 = vu — y(s0 — s1), (4b)
81 = M550, — (51 — 82), (4c)

. Si—1 — Si
Gi=A\ (#) lsg=si} — (50— si1). (4d)

The equilibrium can be readily computed to yield:

:<1+1>/\, si=A, s =0
g

and for the setting up instances we get:

LA
3

100 (—

50 | —

Figure 4: Empirical estimation of S; in steady state
for the JIQ system with instance scaling feedback.
A=100, p =1 and v = \/4.

Therefore, the system auto-scales in a similar fashion, over-
provisioning idle instances to route arriving jobs and and
“warming up” a suitable number of instances to replace
them.

With the same techniques, we can write a linear approxi-
mation of the system’s behavior around the equilibrium as:

d[6so] = —v8sodt 4+ vEs1dt + véudt + VAdW1 — vV AdWoa;
d[6s1] = —ds1dt + VAAW3 — VAW,;
d[du] = —vdudt — VAW + VAdWs.

As before, W; are standard Brownian motions accounting
for the server spawning and recalling, as well as arrival and
departures, respectively. Going into the state space formula-
tion and computing the covariance matrix, we get the follow-
ing estimate for the variance of the number of idle instances:

2 A A 1 v

Efotso =1)'] v T (7+1 +7+V> '
Recall that, for the case of no delay E[3(so — s1)%] = \/7,
so the delay increases the variability of the number of idle
instances, while not changing its mean value A/~. Therefore,
one should design the system with a lower value of the recall
rate v to avoid working with zero idle queues and routing
randomly. Unfortunately, a simple design strategy such as
the one presented for JIQ is not available in this case.

In Figure 5 we plot the evolution of the system, assuming
the setting up delay is 10% of the processing time (v = 10),
for the same recalling rate A\/4 as before. Note that the
system again auto scales, but operates with a higher prob-
ability of running out of instances. However, the impact on
performance is minimal, at the expense of keeping a suitable
amount of instances in the process of setup.

100 —

m Time SO - ’
mw..mm i WM Mw Wlh

Tlme

Figure 5: Time evolution of the JIQ system with
scaling feedback and creation delay, for A = 100,
pw =1, v =10 and v = A\/4. Above: total number
of instances Sy, currently working S; and setting up
U and their fluid limit. Below, number of idle in-
stances in the system.

4. SIZING LONG TERM RESERVATIONS

Finally, let us analyze the problem of long term reser-
vations: typically cloud instances can be purchased at a
reserved price with a cost p, (per unit of time). These re-
served instances are available at all times. If extra capacity
is needed, instances can be spawned on-demand at a cost pq,
where typically pq > pr, otherwise there would be no point
in making reservations. The problem from a customer per-
spective is to determine how many reserved instances should
be purchased. In steady state, the cost incurred per unit of
time is given by:

C(N;pr,pa) = prN +paE [(S(t) = N)T].

where S(t) is the total number of active instances.
The general long term reservation problem is therefore:

minp, N +pak [(S — N)*] (5)

where S is the number of active instances in steady state,
and is policy dependent.

As a first example, consider the idealized case where in-
stances are created immediately for each arriving job, and
thus the system behaves as an infinite server queue. In that
case, S = (n — N)* an the above problem becomes.

m]\i]inN + paE [(n— N)+] (6)

Note that E[(n — N)*] = [(n — N)dF,(n), where F,(n)
is the steady-state distribution of the number of jobs in the
system. Furthermore:

9

ON
Differentiating the cost function in (6) and applying the
above result we get the optimality condition:

Dr—1-Fa(v) (7)
Pd
This optimality condition is well known in economics, in the
context of the Newsvendor Problem. In our case, reserving
extra capacity incurs a cost whenever this capacity is not
fully utilized, and (7) yields the exact tradeoff.

We now specialize this result to the particular policy at
hand: since n(t) follows an M /M /oo queue, in steady state
n(t) ~ Poisson(A) (recall 4 = 1). For a large scale system
(A > 1), this can be properly approximated by a Gaus-
sian distribution with mean A and variance A. By using
this Gaussian approximation we get the optimal number of
reserved instances:

oo

Blin = M) = = [" dFu(m) = ~(1 = F.(V))

N A+ 2, /p, VA

where z, is such that P(Z > z.) = «, i.e. the Gaussian
right quantile.
For the above long term reservation, the optimal cost is:

C*(\) =prA+ pd\/qu(Zpr/pd)

where ¢(z) is the standard Gaussian pdf.

Consider now the JIQ policy with feedback. In that case,
the total number of active instances is S(t) = So(¢) which in
steady state is approximately Gaussian with mean and vari-
ance A\(1 + 1/+). Therefore, proceeding in the same fashion
as before, the optimal reservation is:

1 1
N" =~) 1+7)—|—zr)\(1+—)
(5 Pr/Pd ~

And the optimal cost can be computed as:

* 1 L
CJ]Q()\) = pr)\ <1 + ;) + pa A <1 + ;)gb(zpr/Pd)

Note that, while there is an increase in cost due to the ex-
tra instances that the system keeps active, choosing v as in
Section 3 this increase in cost can be made small. With a
similar procedure, we can also analize the case of instance
creation delay.

S. CONCLUSIONS

In this paper, we analyzed the problem of spawning on-
demand instances in a cloud computing environment, to
serve a given stream of job requests. We studied two settings
to scale the number of instances in feedback: a centralized
one with queue at the dispatcher, spawning extra instances
with the build-up of the queue, and a second one where the
dispatcher immediately needs to route the arriving jobs, and
thus couples the analysis with traditional decentralized load
balancing schemes. In both scenarios we performed fluid an
diffusion approximations to evaluate the performance and
tradeoffs involved. We also analyzed the case of long term
reservations for the policies involved. We are currently ex-
ploring the appropriate scaling of the spawning rates to min-
imize queueing delay while keeping control of the on-demand
servers, as well as integrating both the provider and client
perspectives in a common optimization framework, as well
as considering heterogeneous instances and pricing models.

6. REFERENCES

[1] D. Gamarnik, J. N. Tsitsiklis, and M. Zubeldia. Delay,
memory, and messaging tradeoffs in distributed service
systems. In ACM SIGMETRICS 2016, Juan-les-Pins,
France, pages 1-12, 2016.

[2] D. Goldsztajn, A. Ferragut, and F. Paganini. A
feedback control approach to dynamic speed scaling in
computing systems. In CISS’17, Baltimore, MD, 2017.

[3] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska.
Dynamic right-sizing for power-proportional data
centers. IEEE/ACM Trans. Netw., 21(5):1378-1391,
2013.

[4] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and
A. Greenberg. Join-idle-queue: A novel load balancing
algorithm for dynamically scalable web services.
Performance Evaluation, 68(11):1056-1071, 2011.

[5] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Trans. on Parallel
Distrib. Syst, 12(10):1094-1104, 2001.

[6] D. Mukherjee, S. Dhara, S. Borst, and J. van
Leeuwaarden. Optimal service elasticity in large-scale
distributed systems. In ACM SIGMETRICS 2017,
Urbana-Champaign, IL, 2017.

[7] N. D. Vvedenskaya, R. L. Dobrushin, and F. L.
Karpelevich. Queueing system with selection of the
shortest of two queues: An asymptotic approach.
Problemy Peredachi Informatsii, 32(1):20-34, 1996.

[8] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan,

S. Ha, and M. Chiang. On the Viability of a Cloud
Virtual Service Provider. In ACM SIGMETRICS 2015,
Portland, OR, pages 235248, 2016.

