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ABSTRACT
Many modern schedulers can dynamically adjust their ser-
vice capacity to match the incoming workload. At the same
time, however, variability in service capacity often incurs op-
erational and infrastructure costs. In this abstract, we char-
acterize an optimal distributed algorithm that minimizes
service capacity variability when scheduling jobs with dead-
lines. Specifically, we show that Exact Scheduling minimizes
service capacity variance subject to strict demand and dead-
line requirements under stationary Poisson arrivals. More-
over, we show how close the performance of the optimal
distributed algorithm is to that of the optimal centralized
algorithm by deriving a competitive-ratio-like bound.
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1. INTRODUCTION
Traditionally, the scheduling literature has assumed a static

(fixed) service capacity. However, it is increasingly common
for modern applications to have the ability to dynamically
adjust their service capacity in order to match the current
demand. For example, when using cloud computing services,
one can modify the total computing capacity by changing
the number of computing instances and their speeds. Power
distribution networks can also adapt the energy supply to
match the energy demand as it changes over time.

The ability to adapt service capacity dynamically gives
rise to challenging new design questions. In particular, how
to maintain predictability and stability of service capacity
is of great importance in such applications since peaks and
fluctuations often come with significant costs [1]. This trend
is especially true for the examples of cloud computing and
power distribution networks mentioned above. Cloud con-
tent providers prefer stable and predictable service capacity
because on-demand contracts for compute instances (e.g.,
Amazon EC2 and Microsoft Azure) are typically more ex-
pensive than long-term contracts. Additionally, large fluc-
tuations in service capacity induce unnecessary power con-
sumption and infrastructure strain for computing equipment.
The emerging load from electric vehicle charging stations
also leads to similar challenges in power distribution net-
works. Charging stations require stability in power con-
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sumption because fluctuations and large peaks in power use
may strain the grid infrastructure and result in a high peak
charge for the station operators. The stations also prefer
predictable power consumption because purchasing power
in real time is typically more expensive than purchasing in
advance.

Thus, in situations where service capacity can be dynam-
ically adjusted, an important design goal is to minimize
the costs associated with variability in the service capac-
ity while maintaining high quality of service. In this pa-
per, we study this problem by minimizing the variance of
the service capacity in systems where jobs arrive with de-
mand and deadline requests. Our focus on service capacity
variance is motivated by applications such as cloud comput-
ing and power distribution networks, where contracts often
explicitly depend on service capacity variability, e.g., if a
charging station participates in the regulation market, then
costs/payments depend explicitly on the variance of the to-
tal capacity [2, 3].

Although the literature on deadline scheduling is large and
varied (see [4] and references therein), optimal algorithms
are only known for certain niche cases. In particular, the
problem of designing an optimal algorithm that minimizes
service capacity variability while satisfying service quality
constraints, i.e., meeting demands and deadlines, has re-
mained open. Solving this problem is a challenging task
due to the heterogeneous constraints (diversity in service
requests) and the size of the state and decision space (the
number of possible remaining job profile configurations and
feasible control policies).

The goal of this work is to characterize the distributed
scheduling algorithm that minimizes the variance of service
capacity subject to service quality constraints, e.g., meet-
ing job deadlines and satisfying job demands. Our focus
is on distributed algorithms since implementing centralized
algorithms is likely to be prohibitively slow and costly in
large-scale service systems today. From cloud computing to
power distribution networks, such systems are unlikely to
be able to access global information about every job and
server in the system when deciding the service rate of each
job/server. Therefore, distributed algorithms are a necessity
to enable large-scale implementation.

Our Contributions. In this work, we characterize the opti-
mal distributed policy by using tools from optimization and
control theory. Specifically, we show that Exact Schedul-
ing is the optimal distributed algorithm, i.e., it minimizes
the stationary variance of the service capacity among all
distributed policies that strictly satisfy the service require-



ments. Exact Scheduling is a classical algorithm that works
by finishing job service exactly at their deadlines using a con-
stant service rate [1, 4, 5]. Given that our results focus on
distributed algorithms, we also study how the optimal dis-
tributed algorithm performs compared with the optimal cen-
tralized algorithm, which may provide better performance in
theory but requires prohibitively expensive computation to
find in practice. To answer this question, we derive a closed-
form bound on the performance degradation due to using a
distributed algorithm. The bound suggests that, when the
sojourn time is a deterministic variable, Exact Scheduling
attains the optimal trade-off between service capacity vari-
ance and total remaining demand variance achievable by any
centralized algorithms.

2. PROBLEM FORMULATION
We consider a setting in which a service system dynami-

cally adjusts its capacity in order to serve jobs that arrive
randomly with heterogeneous service requirements. We use
a continuous time model and use t ∈ R+ to denote a point in
time. Each job, indexed by k ∈ V = {1, 2, . . .}, is character-
ized by a random arrival time ak, a random service demand
σk, and a random sojourn time τk(≥ σk).1 In order to for-
malize the scheduler design procedure into an optimization
problem, we introduce below the arrival profiles, the service
profiles, the system dynamics, and the design objectives in
detail.

Arrival profiles. We represent the set of jobs as a marked
point process {(ak;σk, τk)}k∈V in R+ × S, where the ar-
rival times ak ∈ R+ are the set of points, and the service
requirements (σk, τk) ∈ S are the set of marks. We as-
sume that the marked point process is a stationary inde-
pendently marked Poisson Point Process, which is defined
by a locally finite non-null intensity measure Λ on R+ and a
mark density measure f(σ, τ) on S [6]. This also implies that
{(ak;σk, τk)}k∈V is a Poisson Point Process on R+×S with
an intensity measure f(σ, τ)Λ. Intuitively,

∫
A
f(σ, τ)Λdσdτ

is the average rate at which jobs with service requirement
(σ, τ) ∈ A ⊂ S arrive. We additionally assume that S is
bounded, and S ⊂ {(σ, τ) : τ ≥ σ ≥ 0}.1

Service profiles. The service system works on each job
k ∈ V with a service rate rk(t) ≥ 0. The service rate can take
non-zero values only when the job sojourns in the system,
i.e., rk(t) = 0 for any t /∈ [ak, ak + τk]. To meet the service
demand of job k, its service rate must satisfy∫ ak+τk

ak

rk(t)dt = σk, k ∈ V. (1)

Without loss of generality, rk(t) = 1 is assumed to be the
maximum rate: that is, rk(t) can take any values in [0, 1],
and rk < 1 corresponds to throttling down service speed at
the expense of prolonging job completion times. The above
sojourn time and maximum rate constraints can be jointly
written as

0 ≤ rk(t) ≤ 1{t∈[ak,ak+τk)}, (2)

where 1A denotes the indicator function for an event A.
The resource consumption is defined by the (active) service

1The condition τ ≥ σ requires a job to have a service de-
mand σ that is no more than the maximum service that can
be provided within its sojourn time τ .

capacity

P (t) =
∑
k∈V

rk(t).

System dynamics. At each time t ∈ R+, job k has a
remaining demand xk(t) = σk−

∫ t
ak
rk(h)dh and a remaining

time yk(t) = ak + τk − t. The set of remaining jobs in the
system can be considered as a Point Process {(xk(t), yk(t))}k
in R2, where x-axis is the remaining demand and y-axis is
the remaining time (see Fig 1). At time t, each point(job)
moves with velocity −rk(t) in x-axis and velocity −1 in y-
axis.

Scheduling algorithms. An online scheduling algorithm
decides the service rates in real-time without using the fu-
ture job arrival information. For scalability, we additionally
restrict our attention to the following form of distributed al-
gorithms which decide the service rate of a job only using
its own information:

rk(t) = u(xk(t), yk(t)) ≥ 0. (3)

Here, u : R2
+ → R+ is a deterministic function of the re-

maining demand xk(t) and the remaining time yk(t) of each
job k at time t. Under any policy of the form (3), the set of
jobs remaining in the system converges to a stationary dis-
tribution. This stationary distribution is a Spatial Poisson
Point Process with intensity measure λ(x, y) satisfying

0 =
∂

∂x
(λ(x, y)u(x, y)) +

∂

∂y
λ(x, y) + Λf(x, y), (4)

where x is the remaining demand and y is the remaining
time. Because the remaining job distribution converges to a
stationary distribution, P (t) also converges to a stationary
distribution. 2

Design objectives. We consider minimizing service capac-
ity variability under hard demand and deadline constraints:2

minimize
u:(1)(2)(3)(4)

Var(P ), (5)

where Var(P ) is a functional of u and λ(σ, τ) satisfying (4).
The optimization problem (5) has demand constraints as in
(1) and service rate constraints as in (2), and the optimiza-
tion variable u is constrained to have the form (3). It is
worth noting that peaks in service rate amplifies the uncer-
tainties in the future arrivals, which in turn produce large
variance in P (t) =

∑
k∈V rk(t) =

∑
k∈V u(xk(t), yk(t)).

3. OPTIMAL SCHEDULING
In order to minimize peaks, it is natural to use a flat

service rate (Fig 1), which is achieved by the scheduling
policy

u(x, y) =


x

y
, if y > 0,

0, otherwise.
(6)

This policy is known as Exact Scheduling and works by fin-
ishing all jobs exactly at their deadlines using a constant
service rate. It is also highly scalable because it is dis-
tributed and asynchronous, and it does not require much

2In this paper, we use the following notation: E[P ] and
Var(P ) represent the stationary mean and variance of a
stochastic process {P (t)}t∈R+ , while E[P (t)] and Var(P (t))
represent the instantaneous mean and variance of P (t) at
time t.
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Figure 1: Exact scheduling depicted in the space of remaining
demand x and remaining time y.

computation or memory use. Although existing literature
has analyzed its performance in various settings [1, 4, 5, 7],
it is not known whether and when the policy is optimal.
Our main result is the following theorem, which shows that
Exact Scheduling minimizes the variance of service capacity
under stationary job arrivals and strict demand and deadline
constraints among distributed algorithms.

Theorem 1. Exact Scheduling (6) is the optimal solution
of (5) and achieves the optimal value

Var(P ) = ΛE
[
σ2

τ

]
.

Theorem 1 shows the achievable performance improve-
ment by performing distributed service capacity control. If
no control is applied, i.e., rk(t) = 1[ak,ak+σk](t), then E(P ) =
Var(P ) = ΛE[σ]. By performing a distributed service ca-
pacity control, the stationary variance can be reduced by
ΛE [σ(τ − σ)/τ ] , where τ − σ is the slack time (the amount
of time left at job completion if a job is served at its maxi-
mum service rate from its arrival time).

To enable large-scale implementation, we focus on dis-
tributed algorithms in this work. Given this focus, it is im-
portant to understand how much performance degradation
is incurred due to restricting ourselves to distributed poli-
cies compared to centralized policies. Centralized policies
are the class of algorithms of the form

rk(t) = w(k, t, At), k ∈ V, (7)

where At = {(ak, σk, xk(t), yk(t)) : ak ≤ t} is the set that
contains the information of jobs arriving before t, and w is
a deterministic mapping from (k, t, At) to rk(t).

Lemma 1. Under any centralized policy of the form (7),
the stationary variance of P (t) is lower-bounded by

Var(P ) ≥ Λ2E[σ2]2

4Var(X)
,

where X(t) is the total amount of remaining service demand
of jobs arriving before t.

Lemma 1 characterizes the trade-off between achieving
a small variance of X(t) and achieving a small variance of
P (t). An immediate consequence of Lemma 1 is a competitive-
ratio-like bound that compares Exact Scheduling (6) and the
best centralized algorithm having the same Var(X) as Exact
Scheduling.

Corollary 1. Let Var(P ) be the stationary variance of
P (t) that is attained by Exact Scheduling (6). Let Var(P ∗)
be the minimum stationary variance attainable by any cen-
tralized algorithm (7) with the same level of Var(X) as Exact
Scheduling. Then, the following holds:

Var(P ) ≤ E[σ2/τ ]E[σ2τ ]

E[σ2]2
Var(P ∗),

where all expectations on the right hand side are taken over
the arrival distribution.

Corollary 1 bounds the ratio of Var(P ) attained by Exact
Scheduling (the optimal distributed algorithm) to Var(P ∗)
achievable by the best centralized algorithm having the same
Var(X) as Exact Scheduling, so the rate of performance
degradation due to restricting ourselves to distributed al-
gorithms CES is bounded by:

CES ≤
E[σ2/τ ]E[σ2τ ]

E[σ2]2
, (8)

which only depends on the characteristics of the incoming
workload.

As an example, if the sojourn time τ is a deterministic
random variable, (8) reduces to CES = 1 and therefore
Var(P ) = Var(P ∗), implying that Exact Scheduling achieves
the optimal tradeoff, performing as well as the best central-
ized algorithm. One such case is when service demands and
sojourn times are deterministic variables, and the service
demand of each job equals its sojourn time (arrival times a
are random). In this case, due to constraints (1) and (2),
rk(t) = 1[ak,ak+τk)(t) is both the optimal centralized policy
and the optimal distributed policy.
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