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Abstract—In this paper we analyze the dynamics of P2P file
exchange networks, considering both queueing and fluid models.
In such systems, the service rate depends on one mostly fixed
component (servers or seeders), and another that scales with the
number of peers present. We analyze a class of M/G Processor
Sharing queues that describe populations and residual workloads
in this situation, characterizing its stationary regime. It is shown
that, under a law of large numbers scaling, the system behaves as
a M/G/1 or a shifted M/G/∞ queue, depending on whether the
server or peer contribution becomes dominant. We also consider
fluid models for populations and residual workloads in the form
of a partial differential equation, and establish connections with
the queueing approach. This method provides broadly applicable
results on stability, variability and transient performance, which
we validate against packet simulations, showing improvement
with respect to earlier models.

I. INTRODUCTION

In a peer-to-peer (P2P) file-sharing system, seeders wishing

to disseminate some content can leverage the upload capacity

of the swarm of leechers that are downloading. This funda-

mental difference with the traditional client-server architecture

is essential for its scalability. From a queueing perspective,

while client-server systems have a fixed capacity shared among

clients, P2P systems superimpose an infinite server component

whose capacity grows with queue occupation.

Several attempts have been made at modeling population

evolution of P2P systems. A first queueing model was pro-

posed in [1], under memoryless distribution assumptions for

peer arrival, completion and departure times. The ensuing

Markov chain is not reversible and hence limited analytical

results are available for it. Another limitation of this model is

that independent exponential times do not capture the fact that

the P2P swarm is often sharing a common content.

An ordinary differential equation (ODE) model for the

populations was subsequently proposed by [2], in essence a

fluid version of the dynamics in [1]. This model also adds a

download capacity limit, and shows there are two cases for

the resulting equilibrium, depending on whether the download

or upload capacity is acting as bottleneck. Global asymptotic

stability results for these equilibria were established in [3].

The model however does not capture general file sizes.

Some other relevant related works are the following: in

[4] a fluid model is considered, where heterogeneous clients
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are allowed. Also, [5]–[7] analyze the evolution of content in

detail, considering a model where the exact chunks each peer

possess is accounted for in the state. These models become

harder to analyze due to the size of the state space. In [8]

a simple model for transient analysis is given, based on a

fixed number of peers arriving at random times. With similar

ideas, download progress is considered in [9], [10]. A related

approach using fluid and diffusion approximations is [11].

This paper has three contributions. First in Section II we

reconsider queueing models of P2P under the simplifying

assumption of a fixed number of seeders, a restrictive but

arguably practical scenario. This queue can be solved exactly,

and the stationary population law is insensitive to the workload

distribution, thus giving results of general applicability. We

perform a scaling limit of this process for large numbers of

peers and find two asymptotic regimes, depending on whether

the seeders can sustain the load on their own, or on the

contrary the P2P contribution is essential. This special case

thus provides valuable insights on P2P behavior within a

classical queueing perspective.

Moving beyond this case, in particular dealing with a

varying number of seeders, has motivated the use of fluid

models; in our recent work [12], [13] we proposed a Partial

Differential Equation (PDE) that describes the evolution of

populations and residual content, and applied control theoretic

methods to study these dynamics, extending the ODE method

to general file size distributions. How do these models relate

to their M/G queueing counterparts? A partial answer to this

question is the second contribution of this paper, presented in

Section III. We show that the mean value of an appropriately

chosen stochastic process satisfies the corresponding PDE, in

the case of fixed service rates. We further show that for the

fixed seeder case, both approaches give consistent results for

the steady-state download advance profiles, and the steady-

state variance of the population.

The third objective of this paper is to validate the fluid

approach beyond its connection to queueing models. In Section

IV we perform direct comparisons with packet-level simu-

lations of BitTorrent [14], which include low-level protocol

details such as chunk availability and exchange rules. Despite

the fact that these details are not represented in the PDE model,

we show that the large scale behavior of the system is captured

with high fidelity, outperforming the previous ODE models.

Conclusions and lines of future work are discussed in Section

V, and an Appendix contains some of the proofs.



II. QUEUEING ANALYSIS OF A CLASS OF P2P SYSTEMS

UNDER GENERAL WORKLOAD SIZES

In a P2P system, content is disseminated by subdividing it

into small chunks, and enabling peers to exchange such units

bidirectionally. Thus every peer present is a server; those who

are also clients are referred to as leechers, whereas seeders

are those peers present in the system only to altruistically

distribute content. There could be a common file of interest

to all peers (e.g. a swarm around a single torrent), in which

case the download is of fixed size. More generally we could

think of “content” as a larger entity (e.g. multiple torrents) and

different peers could have interest in only a portion, which

introduces variability in the job size required by each leecher.

To analyze the dynamics of the population of seeders and

leechers, [1] proposed the following queueing model: leechers

arrive as a Poisson process of intensity λ, x(t) denoting the

amount of leechers in the system at time t. y(t) is the number

of seeders. Leechers turn into seeders at an exponential rate

µ(ηx+y), where η is an efficiency parameter, and µ represents

the upload rate of a single peer, in files per second. Seeders

stay for an exp(γ) time. Despite the simplicity of this model,

the resulting Markov chain is not reversible, hence it is not

easy to obtain analytic results for it; [1] studies it numerically.

Another limitation of this model lies in assuming indepen-

dent exponential times for download completion, which does

not seem natural since workloads involve a common content.

For instance a determinitic job size queue would be more

appropriate for swarms downloading a single file.

It turns out, as we will now show, that both limitations

of the model disappear if we consider a simple variant:

namely, that the population of seeders remains fixed at y0, and
leechers leave the system upon completion. This assumption

is admittedly restrictive, but note that leechers are often

selfish and do not remain after completion. For these cases,

disseminating a file requires the “generous” contribution of a

set of unconditional seeders. Also, we shall see that the fixed

seeder case provides substantial insights. It is also a first step

toward analyzing slowly varying seeder populations.

We make two final assumptions before introducing our

queueing model. Both are supported by our packet simulation

studies in the case of BitTorrent [15].

1) η = 1, i.e. the file-sharing is efficient. The entire upload

bandwidth Rup := µ(x + y0) is used for the service of

leechers present; if a peer has spare bandwidth someone

will find something to download from it. This is a natural

situation if the number of chunks is not exceedingly

small, as suggested by the analysis in [2].

2) The upload bandwidth is equally shared, so each leecher

receives a service rate of r = Rup/x. This fact is

not obvious, it depends on choices of exchange peers,

themselves influenced by incentives such as tit-for-tat

rules [14]; nevertheless, we have validated it empirically.

We are now ready to define our system.

Definition 1 (P2P queueing system with fixed seeders):

The queueing system is defined by: a Poisson process of

client arrivals, with intensity λ; each client requiring an

independent service of size σ > 0 with complementary

distribution function (CCDF) H(σ) of (normalized) mean 1;

and a state-dependent processor sharing discipline that, for an

occupation state x, services each client at rate r = µx+y0

x
.

A. Queueing analysis for fixed seeders

If job sizes are exponentially distributed, H(σ) = e−σ, the

leecher queue x(t) will behave as a Markov chain with state

space N and the following transition rates qij :

qx,x+1 = λ, qx,x−1 = µ(x+ y0), x > 0. (1)

The above is a specialization of the model in [1] to the case

of fixed seeders. The advantage here is that this chain can be

solved explicitly, using basic birth-death process results:

Proposition 1: If we denote ρ = λ/µ, the equilibrium

distribution for the number of leechers in the birth-death

process (1) is:

π(n) =

[
∞∑

m=y0

ρm

m!

]−1
ρn+y0

(n+ y0)!
for n > 0. (2)

In particular, the system is stable for any λ, µ and y0.
Moreover, by the insensitivity of PS queues (c.f. [16]

and references therein), the invariant distribution of queue

occupation will be independent of the job size distribution,

thus holding also for the system of Definition 1. Note that the

system is a combination of the M/G/1 and M/G/∞ queues.

If we disregard the contribution of leechers, it reduces to an

M/G/1 PS system with load λ/(µy0), and would only be

stable if ρ < y0, which is natural since only the seeders must

cope with the load. If instead we disregard the contribution of

the seeders, the system becomes an M/G/∞ queue, and the

system is stable for all ρ1. Note that in the case ρ > y0 the

leecher contribution is essential to maintain stability.

In order to obtain some performance metrics, it is useful to

compute the probability generating function (pgf) of π. Recall
that if X ∼ π, the pgf is given by G(z) = E[zX ]. By direct

calculation, the pgf of (2) is:

G(z) = z−y0

∑∞
m=y0

(ρz)m/m!∑∞
m=y0

ρm/m!
. (3)

Equation (3) enables us to analyze the performance of the

system, in particular, the average number of leechers and

the average download completion time, which is the key

performance metric:

Proposition 2: For y0 > 0, the average number of leechers

in the system is given by:

x̄ = ρ− y0 +
ρy0−1/(y0 − 1)!∑∞

m=y0
ρm/m!

. (4)

The proof of the above follows by direct evaluation of G′(1).
Through Little’s law, we can deduce from here the average

download time T = x̄
λ
. Other performance measures such as

V ar(x) can be obtained with similar methods.

1Of course, this is an extreme situation where the model is not accurate,
due to possibly missing chunks, but it serves as a limiting case.



B. Measure-valued state

A complete description of system evolution requires taking

into account the remaining services of current jobs. Nev-

ertheless, for the steady-state distribution, the distribution

of residual work has been further characterized in [16], as

follows. Introduce residual lifetime distribution H̄ associated

to H , which has CCDF given by:

H̄(σ) =

∫ ∞

σ

H(s) ds. (5)

Then [16, Thm. 1] states that the invariant distribution of a

M/G−PS system is obtained by choosing the number of jobs

x following π, the solution of the balance equations, and given

that x = n, choosing n copies of the remaining workloads as

iid replications of the distribution H̄ .

The above result describes the stationary law through a two-

stage description; to proceed further, and to cover also the

transient process, we would like to have a state descriptor that

captures both population and residual work. A natural choice

in such PS systems (c.f. [17]) is a random measure on R
+,

which stores the remaining services. Specifically, if at a given

time the number of customers is x(t) and each one of them

has a remaining service σi(t), then the state of the system is

Φt =

x(t)∑

i=1

δσi(t),

where δσ is the Dirac measure concentrated on σ. This gives
a unified description for the state regardless of the number of

jobs present, and performance metrics of the system can be

recovered by integration.

For further analysis of such random measures, a convenient

characterization is the Laplace functional [18], defined by

LΦ[f ] = E
[
e−

∫
∞

0
f(σ)Φ(dσ)

]

for any f > 0 and bounded on R
+. We now apply it to the

invariant distribution of [16, Thm. 1].

Proposition 3: The stationary distribution of the measure

valued process Φt is that of a random measure in R
+ with

Laplace functional:

LΦ[f ] = G

(∫ ∞

0

e−f(σ) H̄(dσ)

)
(6)

for any bounded f > 0, where G(·) is the pgf of π.
The proof follows by conditioning on x = n and noting that:

E[e−
∫

∞

0
f(σ)Φ(dσ) | x = n] =

(∫ ∞

0

e−f(σ) H̄(dσ)

)n

.

We now apply this result together with expression (3) to

analyze the asymptotic behavior of the system in Definition 1.

C. Asymptotic analysis

Typical file sharing systems have a large number of peers.

We would like to use the scale of the system in order to

simplify (2) through the study of its asymptotic behavior, as

the size of the system grows.

For this purpose, consider a family of systems as in Defini-

tion 1 with arrival rate Lλ, where L > 0 is a scaling parameter,

and we will let L → ∞. With this scaling, the load grows as

Lρ. As the number of arriving leechers scales, we also enlarge

the number of fixed seeders as Ly0. Let πL and GL denote

the invariant distribution and its pgf for the scaled system. We

distinguish two cases, depending on whether the seeders alone

can cope with the demand or not.

1) Seeder sustained case (ρ < y0): Whenever ρ < y0 the

seeders can cope with the demand. In the limit case when L →
∞, the system behaves as an M/G/1−PS queue. Formally,

we have the following theorem, proved in the Appendix:

Theorem 1: If ρ < y0, the equilibrium distribution of the

scaled system converges in law to the equilibrium distribution

of an M/G/1− PS queue with load ν = ρ
y0

< 1.
In particular we conclude:

Corollary 1: When ρ < y0, as L → ∞, the average number

of leechers x̄ in the system is given by:

x̄ =
ρ/y0

1− ρ/y0
=

ρ

y0 − ρ
.

Of course, this is a limit value as L → ∞. As for the

average download time, since the arrival rate is Lλ then

T̄ ≈ 1
Lµ

1
y0−ρ

→ 0 as L → ∞, which is consistent with

the fact that the number of servers is scaling with L.
2) Globally sustained case (ρ > y0): We now focus on

the more interesting case ρ > y0, where the contribution of

leechers becomes crucial. If we scale the system as before, the

average number of peers present (4), will also grow with L. We

will employ a law of large numbers type of scaling to obtain

a non-trivial limit. Consider then the family of processes:

Φ̃L =
1

L

xL∑

i=1

δσL
i
,

where as before xL is the number of jobs present in the

system with arrival rate Lλ and Ly0 seeders, and σL
i are

their remaining workloads. The factor 1/L normalizes the total

remaining workload leading to the following result, proved in

the Appendix:

Theorem 2: If ρ > y0, the equilibrium distribution of

the scaled system Φ̃L converges in law to the deterministic

measure (ρ− y0)H̄(dσ) on R
+, where H̄(dσ) is the measure

with CCDF defined in (5).

We now give an intuitive explanation of Theorem 2. Recall-

ing (2), the invariant distribution for the number of jobs in the

scaled system can be rewritten as:

πL(n) = P (Y = Ly0 + n | Y > Ly0),

where Y ∼ Poisson(Lρ). If ρ > y0, for large L, P (Y >

Ly0) ≈ 1 and therefore x behaves as a shifted Poisson random

variable of average L(ρ− y0) and their remaining workloads

are iid distributed according to H̄(dσ). As the average number

of jobs grows large with L, the rescaled process Φ̃L is then an

empirical estimator of the distribution H̄(dσ), scaled by ρ−y0.
On average, the process will behave as anM/G/∞ queue with



load ρ, shifted y0 units to the left. The seeders contribute to

lower the average number of peers in the system, thus also

contributing to the average download time. More formally:

Corollary 2: For ρ > y0, as L → ∞, the average number

of leechers and download time in the scaled system verify:

x̄L = L(ρ− y0) + o(L); T̄L =
1

µ

(
1− y0

ρ

)
+ o(1).

Note, however, that the variance of the number of leechers is

not changed by the shift. By analogous calculations we have

that, as L → ∞, V ar(xL) = Lρ+ o(L).
The above result holds for general file sizes, however it is

worth specializing it to the case of all peers downloading the

same content, in which case H(σ) = 1[0,1)(σ). The residual

job size CCDF is then H̄(σ) = 1 − σ, σ ∈ [0, 1], i.e.

the residual job sizes are uniformly distributed in [0, 1]. The
rescaled process then converges to a measure with total mass

(ρ− y0) uniformly distributed in [0, 1]. This uniform advance

profile is a consequence of the processor sharing model and

the fact that jobs are deterministic in size, and would not hold

on exponentially distributed file sizes. We shall also recover

this profile from the fluid analysis of the following section.

III. FLUID MODELS AND CONNECTIONS TO QUEUES

We have obtained closed-form results in the previous section

with M/G queue models for a very special case; if instead we

allow variability in the number of seeders, the relevant queues

are no longer easily solved, even in the exponential case. This

motivated [2] to analyze ODE models for this problem. In

the general workload distribution case, the natural fluid model

takes the form of a PDE, as was recently proposed in [12],

[13]. We summarize the approach here.

The state in such a fluid model is a real-valued function

F (t, σ) that counts the population of leechers present at time

t that have residual workload larger than σ. This function

is monotonically decreasing, satisfying F (t,∞) = 0 and

F (t, 0) = x(t), the total number of leechers, and is assumed

to be smooth. The following incremental analysis provides a

heuristic motivation for the choice of state evolution:

F (t+ dt, σ) = λH(σ)dt + F (t, σ + rdt). (7)

Given the current state F (t, σ), its value after a small time

interval dt is determined in (7) by two components:

• The number of new arrivals in (t, t+ dt] with workload

larger than σ. Of the λdt total arrivals, a fraction H(σ)
has workload larger than σ.

• The number of jobs present at time t with residual work

larger than σ + rdt. These jobs process rdt units of

service, thus remaining above σ at time t+ dt.

By subtracting F (t, σ), dividing by dt and letting dt → 0 we

have the following evolution for the state, in the form of a

transport PDE:

∂F

∂t
= λH(σ) + r(F, y, σ)

∂F

∂σ
. (8)

Here r is the service rate, which in general can depend on the

network state, the number of seeders y (not necessarily fixed)

and possibly the download advance.

A. PDE model for the mean of an M/G/∞ queue.

To connect both approaches, let us focus on the case where

the service rate r is taken to be constant, and hence the

dynamics (8) is linear. In the P2P setting this can arise

when download capacity is the bottleneck. Instead of the

measure-valued state Φt considered before, take as a state its

complementary cumulative distribution function:

ϕ(t, σ) =

∫ ∞

σ

Φt(du). (9)

This piecewise constant, step-decreasing function satisfies

ϕ(t, 0) = x(t), ϕ(t,∞) = 0.

Proposition 4: Let F (t, σ) := E[ϕ(t, σ)] be the expectation
of the random process defined in (9). Then F (t, σ) satisfies

the PDE (8).

Proof: Denote by {Tn} the arrival instants and {σn} the

job sizes. For any fixed times s < t we have the following

evolution equation for the state:

ϕ(t, σ) = ϕ(s, σ+r(t−s))+
∑

n

1{Tn∈(s,t]}1{σ+r(t−Tn)<σn},

where the first term accounts for the service of jobs already

in the system at time s, and the second term accounts for

new arrivals and their corresponding service, 1 denoting

the indicator function. Define F (t, σ) := E[ϕ(t, σ)], then

by taking expectations in the above equation and applying

Campbell’s formula [18] to the independently marked arrival

process {Tn, σn} we get:

F (t, σ) = F (s, σ + r(t − s)) + λ

∫ t

s

H(σ + r(t− τ))dτ.

Assuming2 F (0, σ) differentiable in σ, then F (t, σ) is differ-
entiable, and a solution of:

∂F

∂t
= λH(σ) + r

∂F

∂σ
. (10)

Thus, the PDE dynamics (8) above allows us to track

the average state of the system, for the case of constant

service rates. Unfortunately, this method does not easily extend

to a general r(F, y, σ); in that case a connection must be

sought through scaling limits of the stochastic process. A full

derivation is outside the scope of this paper, we refer the reader

to [17] for fluid limit results on processor sharing systems with

the measure-valued state descriptor, as well as [19] for the

relation between fluid limits and PDE models. Nevertheless, in

what follows we show further evidence of consistency between

the queueing and fluid approaches, for the fixed seeder case.

2This is not a restrictive hypothesis, it holds if the initial condition is picked
using the residual job size distribution H̄ , which always has a density.



B. Fluid equilibrium of a globally-sustained torrent in the

fixed seeder case.

Note that (8) allows the modeling of different bandwidth

sharing disciplines, depending on the choice of r(F, y, σ). We

now specialize it to the processor sharing discipline for fixed

seeders of the previous section r = x+y0

x
, for which we have

∂F

∂t
= λH(σ) + µ

(
x+ y0

x

)
∂F

∂σ
. (11)

Let us analyze the equilibrium of the above model. Denote

by ∗ the values of the system at equilibrium. Setting ∂F/∂t =
0 and integrating in the positive real line we have:

λ

∫ ∞

0

H(σ) dσ + µ

(
x∗ + y0

x∗

)∫ ∞

0

∂F ∗

∂σ
dσ = 0.

Recall that
∫∞

0 H(σ) dσ = 1, the (normalized) average job

size. Also by the hypothesis on F we have
∫ ∞

0

∂F ∗

∂σ
dσ = −F ∗(0) = −x∗.

We conclude that the number of leechers in equilibrium is:

x∗ = ρ− y0,

provided ρ = λ
µ

> y0. Thus, in the globally sustained case

analyzed in Section II-C, the equilibrium of the PDE model

reflects the correct average number of leechers obtained in the

asymptotic analysis.3

Substituting the value of x∗ in the equilibrium condition we

get, using the boundary condition F ∗(∞) = 0:

F ∗(σ) = (ρ− y0)

∫ ∞

σ

H(s) ds = (ρ− y0)H̄(σ),

where we have used the definition of H̄ in (5). The equilib-

rium distribution in the PDE model when ρ > y0 with the

deterministic limit found in Theorem 2.

C. Variance around equilibrium for fixed seeders.

We now focus on the case of deterministic content, i.e.

H(σ) = 1[0,1)(σ), where we can simplify (11) to:

∂F

∂t
= λ+ µ

(
x+ y0

x

)
∂F

∂σ
, (12)

for 0 6 σ 6 1 , with F (t, σ) ≡ 0 for all σ > 1, since no peers

can have more remaining workload than the file size.

We still assume ρ > y0. The equilibrium then becomes x∗ =
ρ−y0 and F ∗(σ) = (ρ−y0)(1−σ) = x∗(1−σ) for σ ∈ [0, 1].
In equilibrium, the download progress of leechers is uniformly

distributed in [0, 1], which corresponds to the residual lifetime

distribution for deterministic jobs. The equilibrium rate per

leecher is

r∗ = µ

(
x∗ + y0

x∗

)
= µ

ρ

ρ− y0
,

and we will denote τ := 1/r∗, which can be interpreted as

the average download time in equilibrium.

3If ρ < y0, no equilibrium with positive x∗ exists, and the solution of the
PDE approaches 0 as t → ∞.

n ✲ τ ✲ ❣ ✲ P
u

y0
ρ

✛

✻

δx

Figure 1. Linearized dynamics as a feedback loop, with injected noise.

We wish to analyze the local variability around equilibrium

using the fluid model, for which we employ the classical

techniques of linearizing the dynamics and representing the

source of variability as injected noise. Since we are treating

deterministic job sizes and fixed seeders, the only source

of randomness are the Poisson arrivals. This corresponds to

introducing a white noise source n(t) on the right-hand side

of equation (12). More formally, Poisson arrivals in an interval

[0, t] can be approximated by λt+
√
λW (t), W (t) being unit

Brownian motion; the classical white noise model identifies

this with
∫ t

0 (λ + n(τ))dτ , with n(t) a stationary process

of power spectral density Sn(ω) ≡ λ. Since the dynamics

exhibits feedback, characterizing the noise response requires

evaluation of the corresponding closed-loop transfer functions.

We now perform the linearization of (12), using incremental

variables x = x∗ + δx, r = r∗ + δr and F = F ∗ + f , and
introducing the injected noise n(t). The linearized dynamics

at the equilibrium become:

∂f

∂t
= r∗

∂f

∂σ
+

∂F ∗

∂σ
δr + n = r∗

∂f

∂σ
− x∗δr + n.

Noting that δr = µδ
(
1 + y0

x

)
= −µ y0

x∗2 δx, we arrive at:

∂f

∂t
= µ

ρ

ρ− y0

∂f

∂σ
+ µ

y0
ρ− y0

δx+ n

=
1

τ

∂f

∂σ
+

1

τ

(
y0
ρ
δx+ τn

)
. (13)

The above dynamics can be written as a feedback loop of the

infinite dimensional system

P :





∂f
∂t

= 1
τ
∂f
∂σ

+ 1
τ
u,

δx = f(t, 0).
(14)

with the static feedback equation u := y0

ρ
δx+ τn as depicted

in Figure 1. The above dynamics are now analyzed via transfer

functions in the Laplace domain.

Proposition 5: The transfer function of system P is:

P̂ (s) =
1− e−τs

τs
, (15)

and the closed loop transfer function between the input n and

the output δx:

Q̂(s) =
τP̂ (s)

1− y0

ρ
P̂ (s)

, (16)

with the latter being stable (analytic in Re[s] ≥ 0).



Proof: Let f̂(s, σ) denote the Laplace transform in the

time variable of f(t, σ). For zero initial conditions, (14) yields

sf̂(s, σ) =
1

τ

∂f̂

∂σ
+

1

τ
û(s);

this is now an ordinary differential equation in σ, with constant
coefficients. Noting that f̂(s, 1) = 0, we have the solution:

f̂(s, σ) =
1

τs
(1− eτs(σ−1))û(s).

Evaluating at σ = 0 gives δ̂x(s), the Laplace transform of

the output. Therefore we obtain the transfer function P̂ (s) in
(15) for the block, as claimed. Moreover, it is easily checked

that ‖P̂ (s)‖∞ = supω∈R
|P̂ (jω)| = 1, achieved at ω = 0. It

follows that the feedback loop has gain:
∥∥∥∥P̂ (s)

y0
ρ

∥∥∥∥
∞

=
y0
ρ

< 1,

and therefore from the small-gain theorem [20], the closed-

loop transfer function Q̂(s) in (16) is analytic in the closed

right half-plane.

As a stationary process, the output variations δx will thus

have power spectral density Sx(ω) = λ |Q̂(jω)|2, with Q̂ in

(16). It turns out that

‖Q̂‖22 =

∫ ∞

−∞

|Q̂(jω)|2 dω
2π

=
1

µ
,

therefore the steady state variance of δx is given by
∫ ∞

−∞

Sx(ω)
dω

2π
=

λ

µ
= ρ.

Referring back to Section II-C, we had argued that for a large

value of the scaling L, the stationary distribution of the number

of leechers had mean ≈ (ρ− y0)L, and variance ≈ ρL. If we
denote this process by xL, we will thus have

xL − (ρ− y0)L√
L

approaching a law of variance ρ; so again we have consistency

with the computed variance for the fluid limit.

IV. VALIDATION OF THE PDE MODEL BY SIMULATION

In the previous Section we showed the consistency between

the queueing and fluid approaches in special cases. The main

interest of the fluid model, however, is that it allows us

to easily go beyond these cases and still deliver analytical

predictions. In this section we review some generalizations,

introduced in [13], and offer simulation experiments that

validate their accuracy. All simulations were performed using

the network simulator ns2 with the BitTorrent library [21],

which closely mimics the behavior of the BitTorrent protocol,

including the chunk availability, the tit-for-tat rules and the

transport layer connections. The file size of interest if of

100Mbytes and is subdivided in 400 small size chunks. The

uplink bandwidth of clients is 256kbps, which accounting for

protocol overheads gives an average upload time 1/µ ≈ 1hr.

A. The case of variable, endogenously generated seeders.

Let us now include in the dynamics the seeder variability.

Assume that leechers that finish download become seeders,

and may stay in the system departing at an individual rate

γ. The dynamics of the system accounting for the number of

seeders y(t), under the processor sharing discipline follows:

∂F

∂t
= λH(σ) + µ

(
x+ y

x

)
∂F

∂σ
, (17a)

ẏ = µ

(
x+ y

x

)
∂F

∂σ

∣∣∣∣
σ=0

− γy. (17b)

Now consider the case of deterministic file sizes, as before.

We also assume that γ > µ, which corresponds to seeders

departing faster than the upload time of a copy of the file,

leading to the globally sustained equilibrium [12]:

x∗ = λ

(
1

µ
− 1

γ

)
, F ∗(σ) = x∗(1− σ), y∗ =

λ

γ
.

In [13], the local analysis of the previous section was carried

out for this dynamics, injecting noise terms n1, n2 in leecher

arrivals and departures. The closed loop transfer function from

noise sources to δx is shown to take the form:

δ̂x(s) =
P̂ (s)

1− P̂ (s)P̂2(s)
[Ŵ1(s)n̂1(s) + Ŵ2(s)n̂2(s)],

where P̂ (s) is exactly of the form (15) with τ = (γ − µ)/γ,
P̂2 = s+µ

s+γ
, and Ŵ1(s), Ŵ2(s) are stable transfer functions

that we omit for brevity. It is shown in [13] that the feedback

loop has also the small-gain property and hence is stable.

This leads to a means of computing the steady-state variance

through a frequency integral, as in the previous section. Here,

however, we do not have closed-form expressions and the

integral is only evaluated numerically. Similar calculations

yield the steady-state variance of δy, the seeder population.

We now simulate this scenario, with an arrival intensity

of λ = 1.8 arrivals per minute. After finishing download,

peers stay in the system as seeders for an exponentially

time with average ≈ 18 min, and thus γ > µ. Results are

shown in Figure 2. For comparison purposes, the dashed lines

indicate the theoretical equilibrium x∗ = 77.8, y∗ = 33.3.
We also calculated the variance of x and y by numerically

integrating the noise input-output transfer functions, with noise

terms of power λ. The dash-dot lines are based on two

standard deviations (≈ 95% confidence interval) predicted by

our model, where we can see that indeed the system behaves

as expected. Furthermore, comparing in Table I our predictions

of variance with those of the ODE model in [2]. Note that our

model provides a closer estimate.

B. Transient analysis

Consider now a different scenario. Suppose a given number

of initial seeders y0 would like to propagate a certain content

to a given number of leechers, with no new arrivals into the

system. Assume that the initial number of leechers is x0, and

their remaining workload is distributed in the positive half line.

These leechers download the content and leave immediately
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Figure 2. Evolution of the number of leechers and seeders in a P2P system
which operates saturated by uplink capacity.

ODE model PDE model Empirical

σ(x) 7.2 11.8 10.55
σ(y) 5.7 7.3 7.9

Table I
PREDICTED AND EMPIRICAL STANDARD DEVIATIONS.

after they finish. This case is a typical situation in torrents

nowadays, with the main relevant performance metric being

the completion time, i.e. the time needed to finish service of

all the initial leechers. The corresponding PDE model is given

by (11) with no arrivals, i.e. :

∂F

∂t
= µ

x+ y0
x

∂F

∂σ
. (18)

As for the initial condition, assume that F (0, σ) = φ(σ), a
strictly decreasing differentiable function of σ, and constrain it

to satisfy φ(0) = x0 (initial number of leechers), and φ(σ) →
0 when σ → ∞. We have the following characterization of

the completion time, which is a slightly generalized version

of a result proved in [13]:

Proposition 6: The time needed to empty a processor-

sharing P2P system with y0 servers and starting from an initial

condition φ(σ) is given by:

T =
1

µ

∫ ∞

0

φ(σ)

φ(σ) + y0
dσ. (19)

We note that the above result encompasses many distributions

of the initial pending workload; if we choose an exponential

φ(σ) = x0e
−σ, then the above integral evaluates to

Texp =
1

µ
log

(
1 +

x0

y0

)
.

This result coincides with the predictions of time to completion

that use an ODE model of the dynamics as in [2], see [13].

If, instead, the initial pending workload approaches φ(σ) =
x01[0,1)(σ) (i.e. all leechers want to download the same

content of unit size), then the time becomes:

TD =
1

µ

x0

x0 + y0
. (20)

The previous expressions have dramatically different behavior

as x0/y0 grows; Texp diverges logarithmically, while TD
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Figure 3. Time to finish service in a P2P system with varying initial leechers.

remains bounded by 1/µ, the time to upload a copy of the file.

This bound holds regardless of the initial number of leechers!

We simulate this scenario, starting the P2P system x0

leechers with no initial content, and y0 seeders. The time to

finish service of the initial leechers is given by equation (20)

which in particular in this case is bounded by 1/µ ≈ 60min.

In Figure 3 we plot the results for several initial values of the

ratio between leechers and seeders x0/y0. The time to finish

download predicted by our model is compared with simulation

results, showing good fit. We also plot the time Texp predicted

by the simpler ODE model, which is pessimistic.

These results again emphasizes the scalability of P2P file

exchange mechanisms: when the demand is large, so is the

available supply. Moreover, these kind of results cannot be

obtained with the previous ODE models, since they lack

information about the download progress.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed models for content propagation

dynamics in a P2P file exchange network. We first looked at

queueing models in the form of an M/G− Processor Sharing

queue, which yield tractable analytical results for the case of

a fixed number of seeders. We characterized the stationary

distribution an showed that under a large network asymptotic

the system can be approximated either by a M/G/1 or a

shifted M/G/∞ queue, depending on whether the server or

peer contribution becomes dominant. We then switched to

a fluid PDE model, and showed basic connections with the

queueing system. In particular in the fixed seeder case we

showed that the equilibrium advance distributions and popula-

tion variance are mutually consistent. The PDE model applies

more generally to the dynamics with seeder variability, and for

studies of transient performance; the latter results are validated

through packet-level simulations, showing improvement with

respect to previously available models.

As future work, from a theoretical perspective, the analysis

of the fluid limits and strong convergence results should be

pursued. From a practical point of view, we believe PDE fluid

models provide a versatile tool that could be applied to other

scenarios of P2P or content dissemination systems.



APPENDIX

Proof of Theorem 1: To prove the Theorem, we shall

show that the pgf GL(z) converges pointwise to the pgf of the

geometric distribution with parameter ρ/y0. Fix first z < y0/ρ.
Using (3), the pgf of the scaled system can be rewritten as:

GL(z) = z−Ly0eLρ(z−1)P (S
(zρ)
L > Ly0)

P (S
(ρ)
L > Ly0)

, (21)

where P (S
(η)
L > Ly0) is the tail probability of a Poisson

distribution with mean Lη. We can interpret SL as the sum of

L independent copies of Poisson(η) random variables. Since

y0 > ρz and y0 > ρ, both probabilities will go to 0 by the

law of large numbers. Using the Bahadur-Rao large deviations

asymptotic [22] for lattice distributions, we write:

P (S
(η)
L ≥ Ly0) ∼

e−L(y0 log
y0
η
+η−y0)

(
1− η

y0

)√
2πLy0

.

Taking η = ρz and η = ρ, replacing the probabilities in (21)

by its equivalent expressions, and cancelling terms we have:

GL(z) →L→∞

1− ρ
y0

1− ρz
y0

,

for all z < ρ/y0, and the right hand side is the pgf of

the geometric distribution. For z > ρ/y0, P (S
(ρz)
L > Ly0)

remains bounded away from 0, since now [y0,∞) includes the

mean. Meanwhile P (S
(ρ)
L > Ly0) → 0 as before. Substituting

again the equivalent for the denominator term we arrive at:

GL(z) ∼ O(
√
L)eL(y0 log

y0
ρz

+ρz−y0) → ∞

when L → ∞ for z > y0/ρ, which concludes the proof.

Proof of Theorem 2: The proof relies on the pointwise

convergence of the Laplace functionals. By analogous calcu-

lations to the ones in Proposition 3, we have that the Laplace

functional of Φ̃L is given by:

LΦ̃L [f ] = GL

(∫ ∞

0

e−
f(σ)
L

H̄(dσ)

)
,

where the term f(σ)/L comes from the fact that we have

scaled the measure ΦL by 1/L. Given f , using the series

expansion of the exponential and the fact that H̄ is a finite

measure, we can write the following approximation:

zL :=

∫ ∞

0

e−
f(σ)
L H̄(dσ) = 1− 1

L

∫ ∞

0

f(σ)H̄(dσ)+ o

(
1

L

)

where the term o(1/L) may depend on f , but not on ρ or y0.
Note that zL →L→∞ 1.
Let now ηL(z) = logGL(z). Recalling (21), we have:

ηL(z) =− Ly0 log z + Lρ(z − 1) + log
(
P (S

(ρz)
L ≥ Ly0)

)

− log
(
P (S

(ρ)
L ≥ Ly0)

)
. (22)

Choose now z∗ such that y0/ρ < z∗ < 1. Then hL(z) :=

P (S
(ρz)
L > Ly0) is increasing in z. Since ρz∗ > y0, by the

weak law of large numbers, hL(z
∗) → 1 and thus hL(z) → 1

uniformly in [z∗,∞). Observe that zL > z∗ for large enough

L. Substituting zL in (22) we get:

ηL(zL) = −Ly0 log zL + Lρ(zL − 1) + log[hL(zL)/hL(1)].

As L → ∞, the last term vanishes by the above argument,

and using the definition of zL and taking limit we have:

lim
L

ηL(zL) = −(ρ− y0)

∫ ∞

0

f(σ)H̄(dσ),

or equivalently, LΦ̃L [f ] → e(ρ−y0)
∫

∞

0
f(σ)H̄(dσ), the Laplace

transform of the deterministic measure, as desired.
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