
A feedback control approach to dynamic speed
scaling in computing systems

Diego Goldsztajn, Andres Ferragut and Fernando Paganini
Universidad ORT Uruguay

Abstract—Speed scaling concerns the dynamic adaptation of
the active service capacity of a computing system to the processing
demands. This problem has received recent attention, motivated
by balancing performance with energy consumption; various pro-
posals have been suggested where the processor speed is a function
of the current job population, combined with an appropiate
scheduling discipline. In this paper we cast the problem in the
setting of feedback control, using a fluid model of the queueing
system; in this framework the problem is of designing a controller
to track the exogenous demand, and the prior work can be seen
as restricting the controller to a static function. By allowing for a
dynamic controller, in particular a proportional-integral law, we
show how the relevant performance tradeoff can be improved. We
further indicate a discrete server implementation of this control
law, based on a mix of dedicated servers and pooled helpers; its
performance is evaluated analytically and by simulation.

I. INTRODUCTION

The possibility of adapting in real-time the processing
speed of a computing system has attracted substantial inter-
est in recent years. Original studies of this type [15] were
motivated by speed adaptation of hardware, e.g. the micro-
processor clock, to trade off processing efficiency with energy
consumption. A similar kind of tradeoff appears in the larger
scale situation of a data center whose active service capacity
is dynamically “right-sized" to match the current load [10].
Yet another incarnation of variable capacity is provided by
current-day cloud computing environments such as Amazon
EC2 [2]; here virtual machine instances with supplementary
computing power can be purchased on the fly, thereby adapting
the contracted capacity to the real-time demand conditions;
[16] provides some analysis of economic tradeoffs in this
scenario.

In most of the literature, speed scaling is specified as a
function mapping the number of jobs currently present in the
system to the active processing capacity, and is combined with
a scheduling policy allocating this capacity between the jobs.
The analysis of such policies is usually based on a cost that
trades off energy and job response time, and comes in two
main flavors: a worst-case analysis over a finite batch of jobs
[1], [5], [11], or a queueing analysis of a speed scaling system
under stochastic demands [3], [7], [14]. This background is
briefly reviewed in Section II.

A central requirement, pointed out in [14], is the robustness
of performance with respect to the system load parameters.
Indeed, since demand variations are the main motivation for
speed scaling, a solution that requires exact knowledge of the
load would not be interesting in practice. Imposing robustness
narrows down the options for a good scaling policy, and calls
into question some of the favored solutions, as we further
discuss in Section II.

In this paper we argue that the performance and robustness
requirements are naturally cast in the context of feedback
control. From this standpoint, speed-scaling is a control system
in which the actuated variable is service capacity, and the
measurement is job population; the control objective is to
track the exogenous load. In Section III we present this
perspective using fluid queueing models. In this language,
existing proposals amount to using a static, possibly nonlinear
controller, an observation that helps understand the observed
limitations. We suggest that a dynamic controller could fare
better; in particular we introduce a proportional-integral (PI)
control, which decouples the latency objective with the robust
tracking requirement. We evaluate analytically its performance
using fluid models driven by noise in the load process.

In Section IV we take a step towards a more concrete im-
plementation of PI speed scaling in a data center environment,
by controlling discrete server units, dynamically summoned
to emulate the desired dynamics in the fluid limit. There
are baseline units devoted to each job, plus helper units that
serve the pool, initially in a processor sharing fashion. We
show through simulations that, for systems of moderate scale,
performance is close to the fluid predictions.

Section V covers work in progress on further implementa-
tion alternatives for the discrete solution. In particular we con-
sider the scheduling component, evaluating the performance
of shortest-remaining processing time (SRPT) scheduling for
helper units. While analytical work on these ideas is open,
simulations look promising. Conclusions and future directions
are presented in Section VI.

II. BACKGROUND AND DISCUSSION

A seminal reference on the optimization of computing
systems with variable speed is [15], which ushered a stream
of literature in computer science (e.g., [1], [4], [5], [11])
on the fundamental tradeoff between job latency and energy
consumption, for algorithms that control scheduling and speed.
The usual formulation is, briefly, as follows: consider a finite
set of jobs, and evaluate (i) the total job completion time; and
(ii) the total energy expended, assuming that power is a given
function P (s) of the service speed s, typically P (s) = sα,
α > 1. A linear combination of (i) and (ii) is often used as a
tradeoff cost. Results take the form of bounding the worst-case
competitive ratio between the cost achieved by a certain online
policy, and the actual minimum cost. The favored policies are
the SRPT scheduling, combined with inverse scaling, namely
setting the speed s(n) = P−1(n) where n is the number
of jobs1; for instance, [4] establishes this combination is 2-
competitive.

1Alternatively, s(n) = P−1(n+ 1) may be chosen.

A parallel approach to this problem is to consider a stochas-
tic queueing system with scalable service capacity. Assuming
arriving jobs follow a Poisson process of intensity λ, and
service durations are exponentially distributed with parameter
µ (i.e. an M/M queue), the model is a continuous time Markov
process over the state n ∈ N with the following transition rates:

qn,n+1 = λ, qn,n−1 = µs(n), n > 0. (1)

The problem of selecting a scaling law s(n) that minimizes
an expected cost of the steady-state distribution of (1) was
analyzed in [8] through dynamic programming. While the
optimal s∗(n) does not have a closed form, bounds can be
obtained, as explained below. References [3], [14] apply this
solution to the speed-scaling problem, choosing a cost of the
form

J = E[N] +
1

β
E[P (s(N))]; (2)

here N is the random occupation for the queue in steady state,
P (s(N)) the random service power and β a tradeoff parameter.
Through Little’s law it is equivalent to trading off mean latency
and energy per job. Results apply also to an M/G queue
(general job size distribution) under the processor sharing (PS)
discipline, exploiting its insensitivity [12].

In [3], [14], numerical comparisons are made between
the optimal scaling and two alternatives: the “gated" policy
where s(n) = s01n>0, with an adequate choice of s0, and the
linear scaling s(n) = n, both for PS and SRPT scheduling.
One of their main observations is that while there is a slight
performance advantage of the optimal law, it suffers from a
fundamental robustness limitation: the optimal s∗(n) depends
critically on the parameter ρ := λ/µ (the system load);
departures of the real load from the “design ρ” deteriorate
performance, which also happens with the gated policy. In
contrast, linear scaling requires no knowledge of ρ and its
performance is robust. Moreover, it is far simpler: indeed, in
the PS case it amounts simply to an M/G/∞ queue where
each job receives its own server. These observations call into
question the justification for the more sophisticated versions
of speed scaling. We now discuss the issue some more.

Optimal, linear, and inverse scaling

If we impose the robustness requirement that the scaling
s(n) must not depend explicitly on the load, then the optimal
policy s∗(n) is ruled out, but perhaps there is another possi-
bility that is close to optimal? Inverse scaling s(n) = P−1(n)
immediately comes to mind, since it was shown to be 2-
competitive in the worst-case model, and does not require
knowledge of the load. Furthermore, the bounds given in [14]
may suggest it is close to s∗(n). Focusing for simplicity on
the case P (s) = s2 and β = 1, we quote the bounds√

n− 2ρ+ ρ ≤ s∗(n) ≤
√
n+ ρ+min

(ρ
2n
,Cρ

1
3

)
,

where C is a constant. Another lower bound applies for n ≤
2ρ. These bounds imply that indeed s∗(n) ≈

√
n = P−1(n)

as n→∞.

However, this asymptotic approximation is not relevant
since population does not grow without bounds. In fact, since
in steady state, the average service rate must balance the load

(E[s∗(N)] = ρ), typical operation will be with s∗(n) around
ρ. In Figure 1 we plot the bounds in [14] for ρ = 10, and see
that in this region of interest, the inverse law s(n) =

√
n is far

from optimal, whereas linear scaling is in the correct range.

0 20 40 60 80 100
0

5

10

15

20

25

n

s

Opt. bounds
s(n) = ρ

s(n) = n

s(n) =
√
n

Fig. 1. Bounds on optimal policy, comparison with inverse scaling and linear
scaling. λ = 10, µ = 1

For an analytical comparison of linear and inverse scaling,
note that any stabilizing policy must satisfy

E[s(N)] = ρ. (3)

Applying Jensen’s inequality to the convex function P (s) = s2

yields E[P (s(N))] ≥ P (ρ) = ρ2. Therefore:

(a) The inverse scaling s(n) =
√
n yields P = N , hence

E(N) = E(P) ≥ ρ2. The combined cost satisfies
J = E[N] + E[P] ≥ 2ρ2. For instance for ρ = 10,
we have J ≥ 200.

(b) Linear speed scaling s(n) = n under PS corresponds
to an M/G/∞ queue with a Poisson(ρ) steady-state
distribution. Therefore E[P (S)] = E[N2] = ρ2 + ρ,
while E[N] = ρ. The overall cost is J = ρ2 + 2ρ,
equal to 120 for ρ = 10.

So while inverse scaling may be a factor of 2 away from
optimality, it is a worse choice than linear scaling in this
situation. The reason is that, in order to scale up capacity
as required to match the load, the queue is forced to operate
around n ∼ ρ2 = 100. This degrades performance in terms
of latency, without significant energy savings since power
has the lower bound ρ2. The conflict between tracking and
performance stems from having forced capacity to be a static
function of queue population; the rest of this paper explores
the possibility of relaxing this tight coupling.

Remark 1. The fact that E[P (s)] ≥ ρ2 for any policy,
means that the power component will dominate the cost J
when load is large. This could be compensated by choosing
a different tradeoff parameter β, but it seems artificial to
tune this parameter to the load. The linear-combination cost
that has been favored in the recent literature is in this sense
questionable; a more reasonable formulation is perhaps to
minimize power subject to a maximum queue occupation E[N],
analogous to [15] for the worst-case setting.

III. DYNAMIC SCALING AS FEEDBACK CONTROL

We introduce here a fluid model of a queue under speed
scaling, replacing the Markov chain (1) by the differential
equation

ṅ = [λ− µs(n) + v]+n ; (4)

This treats n(t) as a continuous quantity, the level of a “tank"
with incoming flow λ and “drained" at rate r = µs. The
noise term v(t) will be discussed later on. [·]+n denotes the
projection required to keep the dynamics in the positive real
line; namely, [u]+n = 0 whenever n = 0 and u < 0, otherwise
[u]+n = u. A word on units: µ was introduced as a parameter
of the job-size distribution; an alternate interpretation (which
we will favor) is to say that jobs have mean size 1, and µ in
jobs/sec is the baseline capacity of our servers, which in turn
can be scaled by the dimensionless quantity s(n).

λ

∫

µs(.)

v

+ ṅ n

r

−

+

Fig. 2. Speed scaling as static feedback control.

Figure 2 expresses the fluid model in terms of a negative
feedback loop. This casts the speed scaling design problem in
classical control terms: the “plant" is a (saturated) integrator,
whose output n is used as measurement for a feedback
controller, with actuation on the service speed r. The loop is
set up to track an exogenous variable λ, unknown a priori;
the speed-scaling law is the controller. Good performance
involves keeping the regulated output n small, keeping in
check the “control effort" involved in r. In this language, the
speed-scaling strategies considered so far all amount to static,
possibly nonlinear controllers.

A brief word on the formal relationship between the
stochastic and fluid models (see [12]): the solution to (a noise-
less version of) (4) can be shown to be the limit of the family
of stochastic processes 1

kn
k(t) as k → ∞, where nk is the

Markov chain state under arrival rate kλ, and suitably scaled
initial condition. The noise term can be justified by finding
the diffusion limit of

√
k
(
nk(t)
k − n(t)

)
; around equilibrium

it behaves as a system excited by Brownian motion of variance
2λt, due to independent contributions of the Poisson arrivals
and the departures due to the random job size. In classical
terms, the noise v(t) in (4) is white with power spectral density
2λ.

A. Analysis of the static controller

Despite its simplicity, the fluid model (4) contains useful
information, starting with the identification of the equilibrium
point n∗, which satisfies µs(n∗) = λ; this is the fluid
counterpart of condition (3).

The noise model can be used to estimate the variances of
relevant quantities around equilibrium. For this we turn to the

local linearized model in δn = n− n∗:

δṅ = −µs′(n∗)δn+
√
2λ w, (5)

Here w(t) is unit white noise. A standard calculation with this
first order linear filter yields the variance of the population and
speed scaling (δs = s′(n∗)δn) around equilibrium, namely

E[δn2] =
λ

µs′(n∗)
;

E[δs2] = s′(n∗)2E[δn2] =
λ

µ
s′(n∗).

From these expressions one can determine a cost function
(analogous to (2)) that trades off mean queue occupation,
represented here by n∗, with power, represented by the second
moment of s. The cost would be (for β = 1):

J = n∗ + (s∗)2 + E[δs2]. (6)

Example 1. Take the linear scaling s(n) = n. From µs(n∗) =
λ we obtain n∗ = λ/µ = ρ, s′(n∗) = 1. Therefore E[δn2] =
E[δs2] = ρ. The cost in (6) is J = ρ2 + 2ρ, consistent with
the result obtained with the stochastic model.

Example 2. Take the inverse scaling s(n) =
√
n. From

µs(n∗) = λ we obtain n∗ = ρ2, s∗ = ρ, and

s′(n∗) =
1

2
√
n∗

=
1

2ρ
=⇒

{
E[δn2] = ρ2/2,

E[δs2] = 1/2.

The cost in (6) gives J = 2ρ2 + 1
2 . In this case we now have

an estimate rather than just a lower bound as given before.
This estimate was also validated empirically.

B. PI control

Looking at the loop of Figure 2: what a control engineer
would consider under these circumstances is, rather than a
complicated search over the space of nonlinear static con-
trollers, using a dynamic controller.

In particular, since one of our objectives is a small equi-
librium queue n∗, the standard prescription is to add another
integrator in the controller: in this way the service rate r = µs
is free to find its correct level to match the input λ, without
requiring the queue population to grow. From a dynamic
perspective, since having two back-to-back integrators would
lead to an oscillatory instability, one must also include a
proportional term in the controller. Namely, use proportional-
integral (PI) control, a widespread methodology. Figure 3
expresses this proposal in block diagram form.

λ

∫

µ

(
1 + b

∫)

n0v

+ ṅ n
+

r

−

−+

Fig. 3. Proportional-integral control for speed scaling.

In the figure we have included a set-point n0 > 0 in the
queue level; the PI controller is based on the error n − n0.

This is required because otherwise, the integrator would have
an input of positive sign, implying an increasing output, unable
to regulate down if necessary. The latency performance will be
determined by the choice of n0, as further discussed below.

It is not necessary for the proportional term to involve n0.
We will actually modify this from the diagram, defining the
control loop by the following set of differential equations:

ṅ = [λ− µ(n+m)︸ ︷︷ ︸
r

+v]+n ; (7a)

ṁ = b[n− n0]+m. (7b)

The interpretation is as follows: the speed scaling s has a
linear term in n as before, but additional capacity can be sum-
moned through the integrated variable m, as soon as n exceeds
the target value of n0. In this way the service capacity adjusts
with no penalty on latency. In the next section we discuss a
possible discrete implementation of such a system. Here we
will characterize its properties from a fluid perspective.

Imposing the equilibrium condition on (7b) implies n∗ =
n0. We will assume this target value is low with respect to the
load ρ = λ

µ , and therefore a positive m∗ = ρ− n0 is required
to obtain an equilibrium in (7a).

As before, we compute the relevant variances through the
linearized model. In state-space form:[

˙δn
˙δm

]
=

[
−µ −µ
b 0

]
︸ ︷︷ ︸

A

[
δn
δm

]
+

[√
2λ
0

]
︸ ︷︷ ︸

B

w. (8)

The stationary covariance matrix of the state is found (see e.g.
[6]) solving the Lyapunov equation AQ+QAT +BBT = 0,
which yields:

Q =

[
λ/µ 0
0 bλ/µ2

]
.

In particular, the variance of the speed scaling δs = δn+ δm
is given by

E[δs2] = 1TQ1 =
λ

µ

(
1 +

b

µ

)
= ρ

(
1 +

b

µ

)
. (9)

This is slightly larger than in the linear scaling case (ρ),
although we may choose a small b > 0 to keep it in check.
In compensation, we have a smaller queue and thus a smaller
latency: n0 can be much smaller than the load ρ. The combined
cost in (6) in this case is

J = n0 + ρ2 + ρ

(
1 +

b

µ

)
.

Again, we note as in Remark 1 that for high-loads the cost
will be dominated by ρ2, which is the inevitable portion of
the cost, since s∗ = ρ is a hard constraint for any stabilizing
controller. What we argue here is that, given this necessary
power expenditure, the PI controller can achieve a much better
performance in job latencies, represented by n0.

IV. DISCRETE SERVER IMPLEMENTATION

We now discuss an implementation of the proportional-
integral control law in terms of discrete servers or computing
instances, which is more amenable to implementation in scal-
able computing environments.

Returning to a stochastic setting, assume as before that jobs
arrive as a Poisson process of intensity λ, and job sizes are
exponential with mean 1. Upon arrival, each job is allocated a
dedicated server of rate µ, and we denote by N(t) the random
number of jobs (and thus dedicated servers) present in the
system at any given time. However, there is a second class
of pooled servers (for simplicity, also of rate µ) that can be
summoned in order to help jobs already in the system. We call
these helpers, and denote their number at any given time by
M(t). In this section we assume that the helper capacity is
shared (PS discipline) between all current jobs.

Fig. 4 illustrates the queueing system, with the population
N of dedicated servers of rate µ spawned on job arrivals, and
the helper capacity µM(t) shared among all current jobs.

...
...

N(t) M(t)

λ

Fig. 4. System with dedicated and helper servers.

Define the following policy for helper creation: each job
present in the system summons a helper at rate b while
working. Also, a central process decides to recall (destroy)
helpers at global rate bn0 to prevent the number of helpers
from growing out of bounds. Assume moreover that helper
creation and destruction occur after independent exponential
times. Under these assumptions, the process (N(t),M(t))
is a continuous time Markov chain with the transition rates
depicted in Fig. 5:

(n,m)

(n,m+ 1)

(n+ 1,m)

(n,m− 1)

(n− 1,m)

bn

λ

bn01m>0

µ(n+m)1n>0

Fig. 5. Continuous time Markov chain implementation of the PI controller.

Note that in these dynamics, the helpers are created by
present jobs in order to speed up the system, but the helper
removal rate ensures that population stabilizes at a target value
n0 with the appropriate amount of helpers. Fig. 6 contains a
simulated trajectory of the Markov chain, for the parameter

0 20 40 60 80
0

20

40

60

80

n

m

Fig. 6. Markov dynamics and fluid approximation.

values λ = 100, µ = 1, b = 0.5 and n0 = 30. After a transient,
we see the dynamics settle around the point n = 30, m = 70.

We would like to understand this process analytically, and
here again we resort to fluid limits. As before, this limit is
obtained by replacing transition rates with drift terms in a
differential equation, with appropriate projections, as follows:

ṅ = [λ− µ(n+m)]
+
n , (10a)

ṁ = b [n− n0]+m . (10b)

These fluid dynamics coincide with the PI controller proposed
in (7) (for the moment without considering the noise term).
In fact, a numerical simulation of the ODE (10) provides the
second trajectory depicted in Figure 6, which converges to the
equilibrium n∗ = n0, m∗ = ρ− n0 as expected.

To analyze the variability around equilibrium, once again
we will use the diffusion approximation and incorporate noise
terms to the differential equation, linearized around equilib-
rium. There is a difference with respect to the previous section:
since helpers are summoned and destroyed at random times,
there is an additional noise term injected in the m dynamics,
with power spectral density 2bn0. The local dynamics with
noise is the following variation of (8):[

˙δn
˙δm

]
=

[
−µ −µ
b 0

]
︸ ︷︷ ︸

A

[
δn
δm

]
+

[√
2λ 0
0

√
2bn0

]
︸ ︷︷ ︸

B

[
w1

w2

]
,

with w1, w2 independent unit white noise signals.

Again we compute the steady-state covariance matrix by
solving the Lyapunov equation AQ + QAT + BBT = 0,
yielding:

Q =

[
ρ+ n0 −n0
−n0 b

µ (ρ+ n0) + n0

]
Note that in this case n and m are correlated, something

that did not happen for the situation of (7). From the covariance
matrix we again find the variance of s:

E[δs2] = 1TQ1 = ρ

(
1 +

b

µ

)
+
bn0
µ
.

This is the same as in (9) except for the additional bn0/µ term.
The power cost is higher in this case, however the difference
can be made small by an appropriate choice of b. The tradeoff
cost becomes:

J = n0 + ρ2 + ρ

(
1 +

b

µ

)
+
bn0
µ
.

V. SCHEDULING FOR THE DISCRETE IMPLEMENTATION

In Section IV we discussed how to implement the PI speed
scaling by spawning individual computing instances. We now
take a closer look at the allocation of this pooled capacity
among present jobs. In particular we are concerned about
practicality of implementation, and the possibility of further
improving performance. In regard to implementation, the PS
policy previously discussed can be impractical because each
helper instance must divide its rate between all present jobs.
Such fine grained scheduling may be infeasible in large scale
problems, so we now analyze a simpler alternative showing
the same behavior.

Consider the following policy: assume each time a helper
instance spawns, it is assigned to a random job in the system
(with possibly multiple helpers attending a single job). Every
time a job finishes, the helpers working on it can be resched-
uled to another random job. Helpers are destroyed as before
at a rate bn0. This random assignment policy is very easy to
implement, and since the helper assignment is work-conserving
(no helper servers are idle), the total available rate is used,
and the total population of jobs and helpers follows again
the model in Fig. 5. By performing this random assignment,
we avoid the need to explicitly pool the helper capacity, and
the randomness ensures that this capacity is fairly distributed
among jobs currently in service.

In Fig. 7 we plot the time evolution of the system under
the PS discipline and under the random assigment policy, with
the fluid model solution (10) for reference. We can see that
performance is similar in both cases.

A different approach is to try to redirect the extra capacity
towards finishing as much jobs as possible thus minimizing
delay. In the context of fixed capacity systems, it is well
known [9], [13] that the shortest remaining processing time
(SRPT) discipline is optimal in terms of minimizing delay.
In the context of dynamic scaling, no such result is available,
and in fact simulations show that the improvement is not much
over PS when using linear or inverse scaling [14].

Nevertheless, it is worth examining whether allocating
helper capacity using SRPT scheduling can improve system
performance. Note that in this case, since the scheduling is
determined using full knowledge of job remaining time, the
stochastic system no longer behaves as a Markov chain, and
the fluid limit is also no longer a valid approximation. We
thus resort to simulation: results under the same parameters
are shown in Fig. 8. The fact that helper capacity is created
to stabilize the population at n = n0 (and thus, by Little’s
law delay is stabilized), makes the contribution of SRPT less
important in terms of delay. However, as we can see in Fig. 8,
transients are damped, and variability in service rate is reduced,
thus obtaining a more predictable usage profile, a desirable
feature in provisioning of data centers or cloud instances.

0 10 20 30 40 50
0

20

40

60

80

t

n
m

0 10 20 30 40 50
0

20

40

60

80

t

n
m

Fig. 7. PS (above) and random assignment (below) time evolution with
dynamic scaling. λ = 100, µ = 1, b = 0.5 and n0 = 30.

0 10 20 30 40 50
0

20

40

60

80

t

n
m

Fig. 8. SRPT scheduling for helper capacity with dynamic scaling, time
evolution for λ = 100, µ = 1, b = 0.5 and n0 = 30.

On the flip side, implementing an SRPT scheduling mech-
anism involves not only pooling the whole helper capacity,
but also obtaining precise information of remaining processing
time across all jobs, in order to redirect capacity. Finding a
practical approximation of the SRPT policy in the context of
large scale systems will be pursued as future work.

VI. CONCLUSIONS AND FUTURE WORK

We have analyzed the problem of speed scaling in com-
puting systems from the point of view of feedback control.
From this perspective, prior work on this problem is restricted
to static, memoryless controllers based on the current queue
occupation. Allowing for a dynamic controller with modest

complexity (PI) has advantages in terms of achieving robust
tracking of an exogenous load, while maintaining job latencies
in check. A discrete implementation of such controller was
proposed, in which the integral term is implemented through
a pool of helper servers. It is shown how performance is
adequately predicted by the fluid models considered. We
also present preliminary work on the scheduling component
for these pooled servers, with particular attention to SRPT
scheduling. In future work we intend to delve more deeply
into these implementation alternatives.

ACKNOWLEDGMENT

The authors would like to thank R. Srikant for his input
in the early stages of this work. This research was partially
supported by AFOSR US under grant FA_9550_15_1_0183.

REFERENCES

[1] S. Albers and H. Fujiwara, “Energy-efficient algorithms for flow time
minimization,” ACM Transactions on Algorithms (TALG), vol. 3, no. 4,
p. 49, 2007.

[2] Amazon Web Services, “Amazon Elastic Compute Cloud (EC2).”
[Online]. Available: http://aws.amazon.com/ec2/

[3] L. L. Andrew, M. Lin, and A. Wierman, “Optimality, fairness, and
robustness in speed scaling designs,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 1, pp. 37–48, 2010.

[4] L. L. Andrew, A. Wierman, and A. Tang, “Optimal speed scaling under
arbitrary power functions,” ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 2, pp. 39–41, 2009.

[5] N. Bansal, H.-L. Chan, and K. Pruhs, “Speed scaling with an arbitrary
power function,” in Proceedings of the twentieth annual ACM-SIAM
symposium on discrete algorithms. Society for Industrial and Applied
Mathematics, 2009, pp. 693–701.

[6] J. Burl, Linear Optimal Control: H2 and H∞ methods. Menlo Park,
CA: Addison Wesley, 1999.

[7] L. Chen and N. Li, “On the interaction between load balancing and
speed scaling,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 12, pp. 2567–2578, 2015.

[8] J. M. George and J. M. Harrison, “Dynamic control of a queue with
adjustable service rate,” Operations Research, vol. 49, no. 5, pp. 720–
731, 2001.

[9] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press,
2013.

[10] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Transactions on
Networking (TON), vol. 21, no. 5, pp. 1378–1391, 2013.

[11] K. Pruhs, P. Uthaisombut, and G. Woeginger, “Getting the best response
for your erg,” ACM Transactions on Algorithms (TALG), vol. 4, no. 3,
p. 38, 2008.

[12] P. Robert, Stochastic networks and queues. Springer Science &
Business Media, 2013.

[13] L. Schrage, “Letter to the editor—a proof of the optimality of the
shortest remaining processing time discipline,” Operations Research,
vol. 16, no. 3, pp. 687–690, 1968.

[14] A. Wierman, L. L. Andrew, and A. Tang, “Power-aware speed scaling
in processor sharing systems: Optimality and robustness,” Performance
Evaluation, vol. 69, no. 12, pp. 601–622, 2012.

[15] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on. IEEE, 1995, pp. 374–382.

[16] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and
M. Chiang, “On the Viability of a Cloud Virtual Service Provider,” in
Proceedings of the 2016 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Science. ACM, 2016, pp.
235–248.

