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Abstract— The most tractable models of population dynamics
in peer-to-peer file sharing systems apply to a single class of
peers with homogeneous network access parameters. When
upload bandwidths are heterogeneous, reciprocity mechanisms
lead to non-uniform download rates and a more complex
multi-class dynamics. We consider first a model where mutual
download bandwidths are allocated in proportion to the upload
speed, plus a uniformly distributed server component. For an
ordinary differential equation model of the multi-class peer
populations, we characterize the equilibrium and establish its
global stability, invoking results from monotone systems. We
also analyze a partial differential equation model that tracks
download progress of the populations; we establish the local
asymptotic stability of the equilibrium. Finally, we extend the
ODE model to include a mix of proportional and uniform
bandwidth allocation, which better describes the mechanisms
of BitTorrent systems; again we characterize equilibrium con-
figurations and give a partial result on local stability.

I. INTRODUCTION

Peer-to-peer (P2P) file-sharing networks have become a
popular means to distribute content over the Internet. They
are based on the principle that clients downloading a file can
themselves contribute their upload bandwidth to serve others,
thus achieving a valuable self-scaling property as supply
of server bandwidth increases with demand. One of the
prevailing P2P systems is BitTorrent [2], which incorporates
a reciprocity incentive: peers will orient their upload towards
others from whom they have downloaded the most. This is
designed to avoid free-riding; for game theoretic studies of
the inherent incentives we refer to [9].

P2P networks are inherently dynamic: the population of
peers participating in the sharing of a certain file will vary
over time, as peers arrive and leave the swarm. The speed
of departures is determined by download rates, which them-
selves depend on populations; understanding this feedback
dynamics has been a topic of active research. A Markov
queueing model was proposed in [18], and led subsequently
to an ordinary differential equation model [14], which has
been successful in estimating equilibrium populations, and
establishing stability [13]. These models are coarse in the
sense that the state does not discriminate download progress
of the swarm; in this regard, in [4], [12] it is shown how
download quantities can be tracked by a partial differential
equation model that leads to tighter dynamic predictions
than the models of [14]. The above models are reviewed
in Section II. Other references that attempt a finer tracking
of file pieces are [7], [11], [20].
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The above analytical work on P2P dynamics focuses on
the case of homogeneous peers, with common access band-
width parameters. Here it is natural to assume that the real-
time download bandwidth is evenly distributed, a “processor-
sharing” assumption that simplifies mathematics and shows
good agreement with simulations of homogeneous BitTor-
rent systems. When access parameters are heterogeneous,
however, bandwidth allocation can, and arguably should, be
uneven: a recent reference for this design space is [3]. In
Section III we review an idealized proportional reciprocity
scheme where each peer receives as much as it gives. The
practical tit-for-tat mechanisms of BitTorrent do induce a cer-
tain service differentiation of this kind, whereas other aspects
of the protocol incorporate a processor-sharing component,
as studied empirically in [8]. When it comes to analytical
work on population dynamics, far less is known; some early
work that extends the fluid model of [14] with a two-class
dynamics is [1], [10], however bandwidth allocation is not
related to reciprocity schemes in these references.

The object of this paper is to analyze the population
dynamics of heterogeneous P2P swarms where resource
allocation reflects the reciprocity incentives. In Section IV
we analyze the case of proportional reciprocity with an
ordinary differential equation model; we characterize the
unique equilibrium point of the system and prove it is
globally stable by means of results in monotone systems [6].
In Section V we extend the model to a multi-class version
of the PDE in [12]; again under proportional reciprocity,
we describe the equilibrium and in this case analyze the
local aymptotic stability through small-gain and Lyapunov
arguments. In Section VI we consider the situation where
bandwidth is distributed according to a mixed policy: a
fraction of proportional allocation combined with a fraction
of processor sharing. Using an ODE model, again we char-
acterize the equilibrium and provide a partial result on its
local stability. Conclusions are given in Section VII.

II. BACKGROUND ON P2P DYNAMICS

In a P2P system, content is disseminated by subdividing it
into small chunks, and enabling peers to exchange such units
bidirectionally. Thus every peer present is a server; those who
are also clients are referred to as leechers, whereas seeders
are those peers present in the system only to altruistically
distribute content. Populations of both types of peers may
vary dynamically as arrivals and departures from the swarm
take place, and also leechers may turn into seeders upon
termination of their download, as has been considered in
many models [14], [18]. However a very common scenario in



practice is to have a few persistent seeders who act as overall
servers for the content, and selfish leechers who just abandon
the swarm upon termination. In this paper we will restrict
our attention to this simplified scenario, that nevertheless
captures the essence of p2p file-sharing.

In this section we review models for peer population in the
homogeneous case, where all peers have upload bandwidth µ
(in files/second, i.e. content is normalized to unit size), and
a much larger download capacity that is never a bottleneck.

A. Ordinary differential equation model

Following [14], let x(t) ≥ 0 denote the population of
leechers in the system, taken to be a real variable, with arrival
rate λ peers/second. Let y0 be the fixed population of seeders.
The total upload rate µ(y0 + x) in files/second determines
the departure rate of leechers, so the population dynamics is

ẋ = λ− µ(y0 + x). (1)

Clearly, if λ < µy0 the trajectories of (1) converge to zero
in finite time, at which point the equation must be projected
for x to stay at the zero boundary. This, however, is not an
interesting case, since servers y0 on their own could satisfy
the download demand without any p2p contribution.

The more important case is λ > µy0. Here trajectories
will remain positive and converge to the equilibrium point

x∗ =
λ

µ
− y0. (2)

B. Partial differential equation model

The dynamic model (1) contains limited information on
the system state: the leecher population is counted by a
single variable, without any detail on the progress in their
download. To characterize the latter, without the complex
detail of keeping track of specific chunks, in [4], [5], [12] it
is proposed to track populations as a function of the fraction
of downloaded content, treated as a continuous variable.

Let σ ∈ [0, 1] represent fraction of the content file,
assumed of unit size. Define the real-valued variable F (t, σ)
that represents the population of leechers that at time t, have
pending download of at least σ. Thus F (t, σ), nonincreasing
in σ acts as the complementary cumulative distribution of
the leecher population, with F (t, 0) = x(t), the total leecher
count and F (t, 1) = 0. The dynamic model from [12] is:

∂F

∂t
= λ+ r

∂F

∂σ
, σ ∈ [0, 1]. (3)

Here the arrival rate λ increases the entire distribution,
assuming leechers arrive with no prior content. r represents
the download rate per peer: it regulates the speed at which
the function F (t, σ) is transported in the direction of σ = 0.
In our scenario of fixed seeders, the simplest expression for
the rate is

r =
µ(x+ y0)

x
. (4)

This assumes: (i) Efficiency, i.e. the entire upload bandwidth
µ(x+y0) is available for download; (ii) a processor sharing
discipline, i.e. the upload bandwidth is uniformly distributed

among leechers. Empirical evidence indicates that this is
quite an accurate model for BitTorrent systems under the
homogeneity assumption (see [5], [12]).

The equilibrium of (3) under (4) is a uniform distribution
of download, F ∗(σ) = x∗(1− σ), where x∗ is given by (2).
So ODE and PDE models coincide in their prediction of the
equilibrium population; when it comes to dynamics, however,
it is shown in [5], [12] that the finer state description of the
PDE model provides more accurate predictions.

III. RESOURCE ALLOCATION IN HETEROGENEOUS P2P

Consider now the situation where peers participating in
the swarm have a heterogeneous access to the network,
specified by a set of possible upload rates {µi}ni=1. Assume
there are xi leechers at each of the classes, how is their
total upload capacity

∑
i µixi distributed among the leecher

population? This can be taken a design question (which
allocation should there be?) or as a descriptive question about
current P2P systems (e.g. BitTorrent). A recent reference that
explores the design space is [3], exhibiting a tradeoff between
performance (minimizing mean download time) and fairness,
understanding the latter to mean parity between how much
peers give to, and receive from, the network.

An important requirement for the allocation is a decentral-
ized implementation, i.e. a set of mutual exchange rules peers
can follow to achieve it, without the intervention of a central
authority. We now review a proportional reciprocity scheme
that can achieve the aforementioned fairness, assuming a fine
control of mutual rates. We then compare it with the result
of the more practical mechanisms of BitTorrent.

A. Proportional reciprocity

Consider in this section a fixed, finite set of n leechers,
with upload bandwidths {µi}ni=1, possibly with repetitions.
Let k be a discrete-time index that represents an exchange
slot, and let z(k)ij denote the bandwidth devoted by peer i to
peer j in the k-th slot. Assuming efficiency we have

z
(k)
ii = 0,

∑
j

z
(k)
ij = µi.

The total download rate of peer j from all leechers is

r
(k)
j =

∑
i

z
(k)
ij .

In matrix terms: if Z(k) is the n×n matrix with components
z
(k)
ij , it has zero diagonal and satisfies the relationships

Z(k)1 = µ, [Z(k)]T1 = r(k);

here 1, µ, and r(k) are column vectors with components 1,
µi, and r(k)i respectively, and T denotes transpose.

Based on received rates, peers must select their allocation
for the following slot; a natural rule considered in [9], [17],
[19] is proportional reciprocity: give to others in proportion
to what is received from them. Mathematically

z
(k+1)
ij = µi.

z
(k)
ji

r
(k)
i

,



or Z(k) = diag(µi/r
(k)
i )[Z(k+1)]T . This means to transpose

the matrix and renormalize rows to have sum µ. Modulo the
transpose operation we have then an iterative row and column
renormalization of a non-negative matrix, a topic studied
classically by Sinkhorn [15], who established conditions for
convergence. This connection was made in [17]. In particular,
provided the equations

Z1 = µ, ZT1 = µ

are jointly feasible with a matrix Z of the prescribed struc-
ture, row and column renormalization will converge. If one
only imposes a zero diagonal structure, feasibility will hold
provided no single µi is greater than the sum of the rest. This
is a mild restriction if the peer population is large. Under
these circumstances, the odd and even subsequences of Z(k)

converge, and the rates r(k) k→∞−→ µ.
The conclusion is that proportional reciprocity allocates

each peer, asymptotically, a download equal to its upload.
In the homogeneous case this implies a processor-sharing
model, but in the heterogeneous case service becomes dif-
ferentiated in proportion to contributions to the swarm.

B. BitTorrent’s tit-for-tat and optimistic unchoke

The above rule, while elegant, is not easily implemented
in practice: it requires maintaining open connections with
all other peers, and regulating their rate in a differentiated
fashion, something not simple to implement with Internet
TCP connections. The alternative implemented by BitTorrent
is a ranking scheme: classify peers according to bandwidth
received from them in a recent period, and then “unchoke”
(allow a transfer to) those peers which occupy the highest
places. It turns out that such scheme also closely approx-
imates a proportional allocation, since peers with this rule
tend to form cliques with others of similar upload bandwidth
(for a theoretical justification of this fact see [3], Thm 2.).

In addition to the above tit-for-tat rule, BitTorrent in-
troduces an optimistic unchoke to another peer at random:
this is done to explore the set of peers. This portion of
the upload bandwidth is then distributed in an egalitarian
fashion in the swarm. The result is therefore a combination
of proportional and processor sharing allocations. Empirical
studies that approximately validate these claims are presented
in [8].

IV. ODE MODEL UNDER PROPORTIONAL RECIPROCITY

In this section we begin our theoretical analysis of a
heterogeneous p2p network. We consider a swarm of p2p
leechers downloading a common content file, classified in
n groups according to their upload bandwidths {µi}. Pro-
portional reciprocity is assumed, so each peer receives from
other leechers a service rate equal to its own upload rate.
As just explained, this model is consistent with the tit-
for-tat portion of the BitTorrent exchange mechanism. A
generalization that covers the egalitarian portion inherent in
the “optimistic unchoke” will be discussed in Section VI.

We will also assume that there is a fixed set of seeders
y = y0, each of which has upload bandwidth µ0

1. Let xi
denote the fluid population of leechers in class i, of upload
bandwidth µi. An ordinary differential equation model for
the population dynamics is:

ẋi = λi −

[
µ0y0∑n
j=1 xj

+ µi

]
xi. (5)

Here λi > 0 is the arrival rate of leechers of class i. We are
assuming that the leecher sharing portion of the download
satisfies proportional reciprocity, and thus the download rate
per peer is equal to the class upload bandwidth; however
the seeder portion of the download is equally distributed
among all the peer population. This model parallels (1) for
the single-class case; note however that we now have a more
complex, nonlinear ODE.

Remark 1: Since the state represents populations, the
above equation applies only to the positive orthant Rn+. In
regard to the boundary: if a nonzero x has one coordinate
xi = 0, the corresponding right-hand side of (5) is λi > 0,
hence the flow moves back to xi > 0. Equivalently, an
initial condition xi(0) > 0 ∀i will never reach one of these
boundary faces of the orthant. The only degenerate point
(where our equation is not well defined) is x = 0: the next
assumption implies that this point is never reached from
positive initial conditions.

Assumption 1:
∑
i λi > µ0y0. This means that the seeders

alone cannot cope with the service demands.
We now establish the existence and uniqueness of an

equilibrium point of the dynamics under this condition.
Proposition 1: Under Assumption 1, the dynamics (5) has

a unique equilibrium x∗ = (x∗i ) with x∗i > 0 for each i.
Proof: First note that adding (5) over i gives∑

i

ẋi =
∑
i

λi − µ0y0 −
∑
i

µixi;

this rules out the possibility that xi tends to zero for every
i, since before this happens the sum

∑
i xi would begin to

increase through Assumption 1. So trajectories will remain
in the interior of the orthant. We look for equilibrium points
x∗ in this region. A first necessary condition follows from
the preceding equation:∑

i

λi − µ0y0 =
∑
i

µix
∗
i . (6)

To obtain further necessary equilibrium conditions impose

0 = ẋix
∗
j − ẋjx∗i

= λix
∗
j − λjx∗i − (µi − µj)x∗i x∗j ,

which implies that

λi
x∗i
− µi =

λj
x∗j
− µj ∀ i, j; (7)

1Heterogeneous seeders could be included with essentially no change,
this is avoided for simplicity.



we denote the above quantity by α. Then (6) implies that

α =
µ0y0∑
i x
∗
i

> 0. (8)

Therefore α represents the equilibrium fraction of seeder
bandwidth available per leecher, common to all classes.

Solving now (7) gives

x∗i =
λi

µi + α
, (9)

which can be substituted in (6) to express the necessary
condition for equilibrium as a single equation in α:∑

i

λi
α

µi + α
= µ0y0. (10)

Denote the left-hand side of (10) as g(α). It is strictly
increasing in α ≥ 0, g(0) = 0, g(+∞) =

∑
i λi >

µ0y0. Therefore there exists a unique root α > 0 to (10).
Substituting in (9), there is a unique point x∗ > 0 that
satisfies the conditions for equilibrium. It is straightforward
to show conversely that satisfying (9-10) is sufficient to have
an equilibrium of (5).

We will now establish the global stability of this equilib-
rium point. The key observation is that we are in the realm
of monotone dynamical systems [6], because the vector field
in (5) (let us denote it by h(x)) satisfies the cooperative
condition

∂hi
∂xj
≥ 0 for i 6= j. (11)

Flows satisfying this property2 are monotonic, in the sense of
preserving vector inequalities, which greatly narrows down
the possibilities for the dynamics. We now state the main
result of this section.

Theorem 2: Under the conditions of Proposition 1, the
equilibrium is globally asymptotically stable.

Proof: We begin by verifying condition (11). Indeed
we have for i 6= j:

∂

∂xj

(
λi −

[
µ0y0∑
l xl

+ µi

]
xi

)
=

µ0y0xi
(
∑
l xl)

2
≥ 0.

It follows from [6] (Theorems 3.5 and 3.2) that the corre-
sponding flow is monotone: for two initial conditions satis-
fying the vector inequality x(0) ≤ x̂(0), the corresponding
solutions satisfy x(t) ≤ x̂(t) ∀t. Furthermore, a strong
monotonicity holds in the interior of the orthant.

We now establish that the n-dimensional open interval
X = {x ∈ Rn+ : 0 < xi < λi/µi for each i} is positively
invariant under the flow. Indeed, assume x(0) ∈ X; we
already know trajectories remain strictly positive. For it to
reach the boundary of X at some time t would require some
component to satisfy xi = λi/µi and ẋi ≥ 0. But at such xi
the dynamics (5) gives

ẋi = −
µ0y0∑
l xl

xi < 0,

2Equivalently, the Jacobian matrix ∂h
∂x

is Metzler, with non-negative off-
diagonal elements.

a contradiction. On the other hand, assume the initial condi-
tion is outside X . First we claim the state remains bounded.
In fact: coordinates (if any) satisfying xi(0) < λi/µi will
remain within this bound as before, while those i : xi ≥
λi/µi will have ẋi ≤ 0. We can thus write the bound

µ0y0∑
i xi
≥ ε for some ε > 0.

But then any coordinate i with xi ≥ λi/µi satisfies ẋi ≤
−εxi, and therefore the set X is reached in finite time.

We can thus restrict our attention to the dynamics on the
bounded open interval X . We have a strictly monotone flow
with orbits of compact closure, with a single equilibrium
point in X . Corollary 1.20 in [6] implies there is global
convergence to equilibrium.

V. MULTI-CLASS PDE MODEL

In this section we will work with the partial differential
equation model reviewed in Section II-B that keeps track of
download progress in addition to population, and extend it
to cover the multi-class situation. Specifically, we consider
a content file of unit size, and the continuous variable σ
representing file fraction: let Fi(t, σ) be the fluid population
of leechers of class i that have at time t a pending download
of at least σ. The total class population is Fi(t, 0) = xi. The
corresponding PDE model takes the form

∂Fi
∂t

= λi +

(
µ0y0∑n
j=1 xj

+ µi

)
︸ ︷︷ ︸

ri(F,y0)

∂Fi
∂σ

, σ ∈ [0, 1]. (12)

The equilibrium analysis from the previous section extends
readily to this case. Note from (12) that at equilibrium, ∂Fi

∂σ
must be constant in σ, so we have the uniform distribution

F ∗i (σ) = x∗i (1− σ),

where x∗i satisfies the same equilibrium conditions of the
ODE case. Under Assumption 1 we have a unique equi-
librium point, characterized by (9-10). We will show local
stability of this equilibrium through linearization.

We use x̃i, r̃i to denote incremental scalar variables,
and lowercase notation for the function-valued incremental
variable fi(t, σ) = Fi(t, σ) − F ∗i (σ); we have fi(t, 1) ≡ 0
and fi(t, 0) = x̃i. The linearization is

∂fi
∂t

= r∗i
∂fi
∂σ
− x∗i r̃i (13)

where the incremental rate is

r̃i = −
µ0y0

(
∑
j x
∗
j )

2

∑
j

x̃j = −
α∑
j x
∗
j

∑
j

x̃j ,

with α from (8). The second term in (13) is now expressed
as −x∗i r̃i = r∗i κi

∑
j x̃j , where

κi :=
α

r∗i

x∗i∑
j x
∗
j

.



Note r∗i = α+ µi > α, so
∑
i κi < 1. Let us further denote

ui := κi
∑
j

x̃j . (14)

It will also be convenient to define τi = (r∗i )
−1 =

x∗
i

λi

(equilibrium download time per peer). It follows that the
linearized dynamics is the feedback interconnection of:
• A set of parallel blocks Gi, with input ui and output
x̃i, characterized by the infinite-dimensional dynamics

∂fi
∂t

(t, σ) =
1

τi

∂fi
∂σ

(t, σ) +
1

τi
ui(t), (15a)

x̃i(t) = fi(t, 0), (15b)
0 ≡ fi(t, 1). (15c)

• The static mapping (14), represented in matrix form by

u = K11T x̃, (16)

where K is the diagonal matrix diag(κi).
In [5] the single-class counterpart of the above dynamics
was analyzed. It was shown that the block (15) has transfer
function

Ĝi(s) =
1− e−τis

τis
,

and in particular satisfies ‖Ĝi(s)‖∞ = supω∈R |Ĝi(jω)| =
1. In the present case, the loop transfer function
K11Tdiag(Gi(s)) is of rank one, so its input-output stability
is equivalent to that of the scalar loop gain

L(s) = 1Tdiag(Gi(s))K1 =
∑
i

κiĜi(s).

It follows that

|L(jω)| ≤
∑
i

κi|Ĝi(jω)| ≤
∑
i

κi < 1,

hence input-output stability holds by a small-gain argument.
The internal stability of the linearized dynamics can also

be established through a Lyapunov argument, which is now
skteched without proof due to space limitations.

For each of the infinite dimensional systems in (15), with
local state fi, introduce the storage functional

Vi(fi) = τi

∫ 1

0

σ

[
∂fi
∂σ

]2
dσ. (17)

The following dissipation inequality can be established under
the dynamics (15):

V̇i = u2i −
∫ 1

0

[
∂fi
∂σ

]2
dσ ≤ u2i − x̃2i . (18)

Closing now the feedback loop (16) and imposing
∑
i κi < 1

implies that the global Lyapunov functional

V (f) =
∑
i

κ−1i Vi(fi)

is decreasing along trajectories. A further refinement of this
argument leads to the following asymptotic stability result:

Theorem 3: The dynamics (15-16) is asymptotically sta-
ble in the sense of L2[0, 1]; in particular

‖fi(t, σ)‖2
t→∞−→ 0 for each i.

VI. GENERALIZED ODE MODEL: INCLUDING A
PROCESSOR SHARING COMPONENT

As discussed in Section III-B, BitTorrent systems imple-
ment a mixture of tit-for-tat reciprocity, which approximates
a proportional allocation due to the formation of cliques,
and optimistic unchoke, which provides an egalitarian file
sharing. In this section we use ODE models to analyze this
mixed behavior. The modified dynamics is now presented:

ẋi = λi −

[
µ0y0 + θ

∑n
j=1 µjxj∑n

j=1 xj
+ (1− θ)µi

]
︸ ︷︷ ︸

ri

xi (19)

Here the parameter θ ∈ (0, 1) controls the fraction of
upload bandwidth that all peers devote to the egalitarian file-
sharing. e.g. θ = 1/4 in a typical BitTorrent implementation.
Thus peers of class j will contribute a bandwidth θµjxj to
the common upload pool, which together with the seeder
bandwidth µ0y0 will be uniformly distributed in the leecher
swarm, hence the first term of the rate per peer ri above.
The second term above results from a reciprocity scheme,
involving the fraction (1 − θ) of the bandwidth. Assuming
proportionality as before each leecher will receive from here
a bandwidth equal to its contribution. A model for rates
with this structure was considered in [3]. We now study the
corresponding dynamics.

Proposition 4: Under Assumption 1, the dynamics (19)
has a unique equilibrium x∗ = (x∗i ) with x∗i > 0 for each i.

Proof: We generalize the proof of Proposition 1.
Aggregating (19) over i gives again∑

i

ẋi =
∑
i

λi − µ0y0 −
∑
i

µixi,

therefore we can once again rule out the possibility of
trajectories going to zero, and any equilibrium must satisfy
(6). We further impose

0 = ẋix
∗
j − ẋjx∗i

= λix
∗
j − λjx∗i − (1− θ)(µi − µj)x∗i x∗j ,

which implies now that

α :=
λi
x∗i
− (1− θ)µi =

λj
x∗j
− (1− θ)µj ∀ i, j; (20)

An analogous calculation leads to

α =
µ0y0 + θ

∑
i µix

∗
i∑

i x
∗
i

> 0. (21)

α now represents the equilibrium download bandwidth each
leecher receives from the “egalitarian” portion of the upload.
Now (9) generalizes to

x∗i =
λi

(1− θ)µi + α
, (22)

and further operations lead to the necessary condition∑
i

λi −
∑
i

µix
∗
i =

∑
i

λi(α− θµi)
α+ (1− θ)µi︸ ︷︷ ︸

g(α)

= µ0y0. (23)



The modified function g(α) is still strictly increasing,
g(+∞) > µ0y0, and now with g(0) < 0. So there is still a
single solution to (23), which results through (22) in a single
equilibrium point x∗ > 0.

We now tackle the question of stability of the equilibrium.
Unfortunately, the additional term in the dynamics does not
preserve the monotone property which was crucial for our
earlier global stability argument. What follows is a partial
result on local stability.

Theorem 5: Consider the equilibrium x∗ of the system
(19) under the conditions of Proposition 4. Suppose that α
in (21) satisfies

θµi ≤ 2α for each i. (24)

Then the equilibrium is locally asymptotically stable.
Before proceeding we provide an interpretation for condi-

tion (24). The left-hand side is the upload bandwidth that a
leecher of class i contributes to the swarm in an egalitarian
(non-reciprocal) way; α represents the download portion
every peer receives from the egalitarian upload. (24) means
that no peer is contributing in equilibrium, more than twice of
what it receives; so there is a bound on the level of imbalance
in this non-reciprocal component of the file-sharing.

Proof: We linearize the dynamics around equilibrium.
The incremental rate r̃i now becomes

r̃i =
θ
∑
j µj x̃j∑
j x
∗
j

−
(µ0y0 + θ

∑
j µjx

∗
j )
∑
j x̃j

(
∑
j x
∗
j )

2

=

∑
j(θµj − α)x̃j∑

j x
∗
j

,

where we have invoked (21). The linearized dynamics is

˙̃xi = −r∗i x̃i − x∗i r̃i

= −r∗i x̃i +
x∗iα∑
j x
∗
j

∑
j

(1− θµj
α

)x̃j . (25)

Setting D = diag(r∗i ), v the vector of components x∗
iα∑
j x

∗
j

and w the vector of components 1 − θµj

α , we can write the
linearized dynamics as ˙̃x = Ax̃ with

A = −D + vwT .

Note that A would be a Metzler matrix if the components
of w were non-negative, which happens when θµj ≤ α.
Our hypothesis (24) is however weaker than this, all we can
claim is that |wj | ≤ 1 for all j. Still, this enables a diagonal
dominance argument. For fixed j write

ajj +
∑
i6=j

|aij | ≤ −r∗j +
n∑
i=1

|viwj |

≤ −r∗j +
n∑
i=1

x∗iα∑
j x
∗
j

= −r∗j + α < 0,

(in fact r∗j = α + µj(1 − θ)). Invoking for instance the
Gershgorin Circle Theorem [16] applied to the columns of
A, we find that its eigenvalues must lie in circles of center
ajj , radius

∑
i 6=j |aij |, contained in the open left half-plane.

Therefore A is a Hurwitz matrix.

VII. CONCLUSIONS

We have analyzed the dynamics of P2P networks under
heterogeneity in access bandwidth. For multi-class models
that discriminate peer populations according to this param-
eter, we studied the effect of reciprocity schemes which
provide asymmetric download speeds to these classes. For
proportional schemes where download speeds from other
leechers equal the upload rate, we provide a complete
analysis of the equilibrium and its global stability in the case
of ODE population models, and a local stability analysis for
the finer PDE models that track download advance. For ODE
models with a mixture of proportional and egalitarian file
sharing, partial stability results were given. In future work
we will seek to complete the analysis of this mixed case,
and pursue global questions for the case of PDE models.
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